Codeforces Beta Round #2 A,B,C
The winner of the card game popular in Berland "Berlogging" is determined according to the following rules. If at the end of the game there is only one player with the maximum number of points, he is the winner. The situation becomes more difficult if the number of such players is more than one. During each round a player gains or loses a particular number of points. In the course of the game the number of points is registered in the line "name score", where name is a player's name, and score is the number of points gained in this round, which is an integer number. If score is negative, this means that the player has lost in the round. So, if two or more players have the maximum number of points (say, it equals to m) at the end of the game, than wins the one of them who scored at least m points first. Initially each player has 0 points. It's guaranteed that at the end of the game at least one player has a positive number of points.
The first line contains an integer number n (1 ≤ n ≤ 1000), n is the number of rounds played. Then follow n lines, containing the information about the rounds in "name score" format in chronological order, where name is a string of lower-case Latin letters with the length from 1 to 32, and score is an integer number between -1000 and 1000, inclusive.
Print the name of the winner.
3
mike 3
andrew 5
mike 2
andrew
3
andrew 3
andrew 2
mike 5
andrew
题目链接:http://codeforces.com/problemset/problem/2/A
题意:
给出一些列的名字和分数!正的表示加分,负的表示减分! 求最终分数最大的人的名字;
如果分数最大的人有多个,输出最先达到最大分数的人!
代码如下:
#include <bits/stdc++.h>
using namespace std;
map<string, int> a,b;
string s[];
int main()
{
int x[];
int n;
cin >> n;
for(int i = ; i <= n; i++)
{
cin >> s[i] >> x[i];
a[s[i]]+=x[i];
}
int maxx = ;
for(int i = ; i <= n; i++)
{
if(a[s[i]] > maxx)
maxx = a[s[i]];
} for(int i = ; i <= n; i++)
{
b[s[i]]+=x[i];
if((b[s[i]]>=maxx) && (a[s[i]]>=maxx))//在最终分数是最大的人中,选首先达到最大分数的人
{
cout << s[i];
break;
}
}
return ;
}
There is a square matrix n × n, consisting of non-negative integer numbers. You should find such a way on it that
- starts in the upper left cell of the matrix;
- each following cell is to the right or down from the current cell;
- the way ends in the bottom right cell.
Moreover, if we multiply together all the numbers along the way, the result should be the least "round". In other words, it should end in the least possible number of zeros.
The first line contains an integer number n (2 ≤ n ≤ 1000), n is the size of the matrix. Then follow n lines containing the matrix elements (non-negative integer numbers not exceeding 109).
In the first line print the least number of trailing zeros. In the second line print the correspondent way itself.
3
1 2 3
4 5 6
7 8 9
0
DDRR
题目链接:http://codeforces.com/problemset/problem/2/B
题目大意
给定一个N*N的格子,每个格子里有一个非负数,要求你找出从左上角到右下角的一条路径,使得它满足路径上的格子里的数全部乘起来的积尾部0最少 题解
如果要产生0肯定是2*5得出来的,最终的乘积可以表示为2^x*5^y*C,那么零的个数就是min(x,y)。我们可以先对每个格子里的数预处理下,计算出2和5的个数来,然后DP分别求出2和5的最小个数然后选两者中的最小值,输出路径方法没啥说的,很传统~~还有一个要注意的问题就是如果某个格子的数字为0的情况,这个需要特殊判断一下,我们可以把它当做10,如果最后的结果0的个数大于1则直接输出尾部0的个数为1即可
下面给出AC代码:
#include <bits/stdc++.h>
using namespace std;
#define MAXN 1005
#define INF 0x7fffffff
int path[MAXN][MAXN][];
int dp[MAXN][MAXN][],a[MAXN][MAXN][],n;
int zerox,zeroy,x;
string s;
bool flag;
int main()
{
scanf("%d",&n);
flag=false;
for(int i=;i<n;i++)
for(int j=;j<n;j++)
{
scanf("%d",&x);
if(!x)
{
a[i][j][]=a[i][j][]=;
zerox=i,zeroy=j,flag=true;
}
else
{
while(x%==) {a[i][j][]++;x/=;}
while(x%==) {a[i][j][]++,x/=;}
}
}
for(int k=;k<;k++)
for(int i=;i<n;i++)
for(int j=;j<n;j++)
{
int ans=INF;
if(i==&&j==) ans=;
if(i!=&&dp[i-][j][k]<ans) ans=dp[i-][j][k];
if(j!=&&dp[i][j-][k]<ans) ans=dp[i][j-][k],path[i][j][k]=;
dp[i][j][k]=ans+a[i][j][k];
}
int k=dp[n-][n-][]<dp[n-][n-][]?:;
if(flag&&dp[n-][n-][k]>)
{
for(int i=;i<zeroy;i++)
s+="R";
for(int i=;i<zerox;i++)
s+="D";
for(int i=;i<n-zeroy-;i++)
s+="R";
for(int i=;i<n-zerox-;i++)
s+="D";
cout<<<<endl<<s<<endl;
}
else
{
int i=n-,j=n-;
while(i>||j>)
{
if(path[i][j][k]==)
s+="R",j--;
else
s+="D",i--;
}
reverse(s.begin(),s.end());
cout<<dp[n-][n-][k]<<endl<<s<<endl;
}
return ;
}
The Olympic Games in Bercouver are in full swing now. Here everyone has their own objectives: sportsmen compete for medals, and sport commentators compete for more convenient positions to give a running commentary. Today the main sport events take place at three round stadiums, and the commentator's objective is to choose the best point of observation, that is to say the point from where all the three stadiums can be observed. As all the sport competitions are of the same importance, the stadiums should be observed at the same angle. If the number of points meeting the conditions is more than one, the point with the maximum angle of observation is prefered.
Would you, please, help the famous Berland commentator G. Berniev to find the best point of observation. It should be noted, that the stadiums do not hide each other, the commentator can easily see one stadium through the other.
The input data consists of three lines, each of them describes the position of one stadium. The lines have the format x, y, r, where (x, y) are the coordinates of the stadium's center ( - 103 ≤ x, y ≤ 103), and r (1 ≤ r ≤ 103) is its radius. All the numbers in the input data are integer, stadiums do not have common points, and their centers are not on the same line.
Print the coordinates of the required point with five digits after the decimal point. If there is no answer meeting the conditions, the program shouldn't print anything. The output data should be left blank.
0 0 10
60 0 10
30 30 10
30.00000 0.00000
题目链接:http://codeforces.com/problemset/problem/2/C
题目大意:
有3个圆,求一点a,使点a对三个圆的视角相等(过a做圆的两条切线,此两切线的夹角即为视角)。若有多点视角相等,则取视角最大的点。
设三个圆的半径分别为r1,r2,r3。设点a到三个圆的圆心距离分别为d1,d2,d3。
即目标是2*arcsin(r1/d1) = 2*arcsin(r2/d2) = 2*arcsin(r3/d3)。即r1/d1 = r2/d2 = r3/d3
那么这就是解析几何的问题了,就是列出坐标系,一顿算呗。应该很难算。但是算出公式直接给程序就行了。
看到网上还有一种方法,就是一种随机的算法。
从一个初始的解开始逐步逼近最优解。
当迭代了若干步之后,估值函数的值仍然较大时,则不存在解。
最开始,我取的估值函数cost = fabs(ang1-ang2) + fabs(ang2-ang3) + fabs(ang3-ang1). 其中ang1 ang2 ang3就是用arcsin求出来的。
这样的问题就是可能会带来比较大的误差,因为要计算的arcsin的值可能很小,所以一开始一直都没法AC。
后来我把估值函数cost 取为cost = (d1/r1-d2/r2)^2 + (d2/r2-d3/r3)^2 + (d3/r3-d1/r1)^2,效果就好一些,就AC了。
总而言之呢,这种随机算法的题目就是很蛋疼了。但是在蛋疼的基础上,还是可以采取一些办法去减小误差的。
下面给出AC代码:
#include <bits/stdc++.h>
using namespace std; struct pt {
double x;
double y;
double r;
}; pt mkp(double x, double y) {
pt ret;
ret.x = x;
ret.y = y;
return ret;
} double dis(pt a, pt b) {
return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
} double cost(pt *p, double x, double y) {
double ang[];
for (int i = ; i < ; i++) ang[i] = dis(p[i], mkp(x, y)) / p[i].r; double diff[];
for (int i = ; i < ; i++) diff[i] = ang[i] - ang[(i+)%]; double ret = ;
for (int i = ; i < ; i++) ret += diff[i] * diff[i]; return ret;
} const int dx[] = {, , -, };
const int dy[] = {, , , -};
const double err = 1e-;
int main() {
pt p[];
for (int i = ; i < ; i++) scanf("%lf %lf %lf", &(p[i].x), &(p[i].y), &(p[i].r)); pt ans;
ans.x = (p[].x + p[].x + p[].x) / 3.0;
ans.y = (p[].y + p[].y + p[].y) / 3.0;
double ncost = cost(p, ans.x, ans.y); pt tmp;
double step = 1.0;
bool flag = false;
for (int i = ; i < && ncost > err; i++) {
flag = false;
for (int k = ; k < ; k++) {
tmp.x = ans.x + step * ((double)dx[k]);
tmp.y = ans.y + step * ((double)dy[k]); if (ncost > cost(p, tmp.x, tmp.y)) {
ncost = cost(p, tmp.x, tmp.y);
ans = tmp;
flag = true;
}
}
if (!flag) step *= 0.5;
} if (cost(p, ans.x, ans.y) <= err) printf("%.5lf %.5lf\n", ans.x, ans.y);
return ;
}
Codeforces Beta Round #2 A,B,C的更多相关文章
- Codeforces Beta Round #80 (Div. 2 Only)【ABCD】
Codeforces Beta Round #80 (Div. 2 Only) A Blackjack1 题意 一共52张扑克,A代表1或者11,2-10表示自己的数字,其他都表示10 现在你已经有一 ...
- Codeforces Beta Round #62 题解【ABCD】
Codeforces Beta Round #62 A Irrational problem 题意 f(x) = x mod p1 mod p2 mod p3 mod p4 问你[a,b]中有多少个数 ...
- Codeforces Beta Round #83 (Div. 1 Only)题解【ABCD】
Codeforces Beta Round #83 (Div. 1 Only) A. Dorm Water Supply 题意 给你一个n点m边的图,保证每个点的入度和出度最多为1 如果这个点入度为0 ...
- Codeforces Beta Round #13 C. Sequence (DP)
题目大意 给一个数列,长度不超过 5000,每次可以将其中的一个数加 1 或者减 1,问,最少需要多少次操作,才能使得这个数列单调不降 数列中每个数为 -109-109 中的一个数 做法分析 先这样考 ...
- Codeforces Beta Round #79 (Div. 2 Only)
Codeforces Beta Round #79 (Div. 2 Only) http://codeforces.com/contest/102 A #include<bits/stdc++. ...
- Codeforces Beta Round #77 (Div. 2 Only)
Codeforces Beta Round #77 (Div. 2 Only) http://codeforces.com/contest/96 A #include<bits/stdc++.h ...
- Codeforces Beta Round #76 (Div. 2 Only)
Codeforces Beta Round #76 (Div. 2 Only) http://codeforces.com/contest/94 A #include<bits/stdc++.h ...
- Codeforces Beta Round #75 (Div. 2 Only)
Codeforces Beta Round #75 (Div. 2 Only) http://codeforces.com/contest/92 A #include<iostream> ...
- Codeforces Beta Round #74 (Div. 2 Only)
Codeforces Beta Round #74 (Div. 2 Only) http://codeforces.com/contest/90 A #include<iostream> ...
- Codeforces Beta Round #73 (Div. 2 Only)
Codeforces Beta Round #73 (Div. 2 Only) http://codeforces.com/contest/88 A 模拟 #include<bits/stdc+ ...
随机推荐
- Linux主机SSH免密设置解析
为了保证一台Linux主机的安全,所以我们每个主机登录的时候一般我们都设置账号密码登录.但是很多时候为了操作方便,我们都通过设置SSH免密码登录.那么该如何设置?是不是免密码登录就不安全了呢? 一.被 ...
- NYOJ915——+-字符串
+-字符串 时间限制:1000 ms | 内存限制:65535 KB 难度:1 描述 Shiva得到了两个只有加号和减号的字符串,字串长度相同.Shiva一次可以把一个加号和它相邻的减号交换. ...
- 【java设计模式】【创建模式Creational Pattern】简单工厂模式Simple Factory Pattern(静态工厂方法模式Static Factory Method Pattern)
public class Test { public static void main(String[] args){ try{ Factory.factory("A").doSt ...
- IOS学习2——Xcode快捷键大全
转载自:图文解释XCode常用快捷键的使用 刚开始用Xcode是不是发现以前熟悉的开发环境的快捷键都不能用了?怎么快捷运行,停止,编辑等等.都不一样了.快速的掌握这些快捷键,能提供开发的效率. 其实快 ...
- win10 下 学习 xe10 误以为调试失效
1. XE里面运行的有两个按扭,你点后面一个,就是debug 的了,前面一个是直接运行,不一样的!,被delphi7老思维导向错了 1)绿色箭头是直接运行,快捷键:ctrl+shfit+F9 2) ...
- ElasticSearch 学习记录之ES如何操作Lucene段
近实时搜索 提交(Commiting)一个新的段到磁盘需要一个 fsync 来确保段被物理性地写入磁盘,这样在断电的时候就不会丢失数据.但是每次提交的一个新的段都fsync 这样操作代价过大.可以使用 ...
- NIO中的易筋经
匠心零度 转载请注明原创出处,谢谢! 前言 <易筋经>.天下武功出少林,而易筋经是少林寺的镇寺之宝.学好了易筋经就可以轻易地学好其它武功,只不过很少人学到了它的全部精髓.游坦之只是碰巧学了 ...
- 为什么说Python 是大数据全栈式开发语言
欢迎大家访问我的个人网站<刘江的博客和教程>:www.liujiangblog.com 主要分享Python 及Django教程以及相关的博客 交流QQ群:453131687 原文链接 h ...
- linux系统下phpstudy里的mysql使用方法
linux作为一个优秀的服务器端管理系统,其实linux的桌面系统也用起来十分的nice.好吧,如何你在做开发的时候在linux下安装了lmap或者phpstudy,那么在第一次使用其自带的mysql ...
- ES6(二) Destructuring-变量的解构赋值
1.解构的含义 允许按照一定的模式,从数组和对象中取值,对变量进行赋值,称为解构. 解构赋值时,只要等号右边的值不是对象,就先将其转换成对象. 本质上,这种写法属于 “模式匹配”,只要两边模式相同,左 ...