Java多线程设计模式之线程池模式
前序:
Thread-Per-Message Pattern,是一种对于每个命令或请求,都分配一个线程,由这个线程执行工作。它将“委托消息的一端”和“执行消息的一端”用两个不同的线程来实现。该线程模式主要包括三个部分:
1,Request参与者(委托人),也就是消息发送端或者命令请求端
2,Host参与者,接受消息的请求,负责为每个消息分配一个工作线程。
3,Worker参与者,具体执行Request参与者的任务的线程,由Host参与者来启动。
由于常规调用一个方法后,必须等待该方法完全执行完毕后才能继续执行下一步操作,而利用线程后,就不必等待具体任务执行完毕,就可以马上返回继续执行下一步操作。
背景:
由于在Thread-Per-Message Pattern中对于每一个请求都会生成启动一个线程,而线程的启动是很花费时间的工作,所以鉴于此,提出了Worker Thread,重复利用已经启动的线程。
线程池:
Worker Thread,也称为工人线程或背景线程,不过一般都称为线程池。该模式主要在于,事先启动一定数目的工作线程。当没有请求工作的时候,所有的工人线程都会等待新的请求过来,一旦有工作到达,就马上从线程池中唤醒某个线程来执行任务,执行完毕后继续在线程池中等待任务池的工作请求的到达。
任务池:主要是存储接受请求的集合,利用它可以缓冲接受到的请求,可以设置大小来表示同时能够接受最大请求数目。这个任务池主要是供线程池来访问。
线程池:这个是工作线程所在的集合,可以通过设置它的大小来提供并发处理的工作量。对于线程池的大小,可以事先生成一定数目的线程,根据实际情况来动态增加或者减少线程数目。线程池的大小不是越大越好,线程的切换也会耗时的。
存放池的数据结构,可以用数组也可以利用集合,在集合类中一般使用Vector,这个是线程安全的。
Worker Thread的所有参与者:
1,Client参与者,发送Request的参与者
2,Channel参与者,负责缓存Request的请求,初始化启动线程,分配工作线程
3,Worker参与者,具体执行Request的工作线程
4,Request参与者
注意:将在Worker线程内部等待任务池非空的方式称为正向等待。
将在Channel线程提供Worker线程来判断任务池非空的方式称为反向等待。
线程池实例1:
利用同步方法来实现,使用数组来作为任务池的存放数据结构。在Channel有缓存请求方法和处理请求方法,利用生成者与消费者模式来处理存储请求,利用反向等待来判断任务池的非空状态。
Channel参与者:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
package whut.threadpool;//用到了生产者与消费者模式//生成线程池,接受客户端线程的请求,找到一个工作线程分配该客户端请求public class Channel private static final int MAX_REQUEST100;// //利用数组来存放请求,每次从数组末尾添加请求,从开头移除请求来处理 private final Request[]// private int tail;//下一次存放Request的位置 private int head;//下一次获取Request的位置 private int count;// private final WorkerThread[]// // public Channel(int threads) this.requestQueuenew Request[MAX_REQUEST]; this.head0; this.head0; this.count0; threadPoolnew WorkerThread[threads]; // for (int i0; threadPool[i]new WorkerThread("Worker-" +this); } } public void startWorkers() for (int i0; threadPool[i].start(); } } // public synchronized void putRequest(Request // while (count try { wait(); } catch (InterruptedException } requestQueue[tail] tail1) count++; notifyAll(); } // public synchronized Request while (count0) try { wait(); } catch (InterruptedException } Request head1) count--; notifyAll(); return request; }} |
客户端请求线程:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
package whut.threadpool;import java.util.Random;//向Channel发送Request请求的public class ClientThread extends Thread{ private final Channel private static final Randomnew Random(); public ClientThread(String { super(name); this.channel=channel; } public void run() { try{ for(int i=0;true;i++) { Requestnew Request(getName(),i); channel.putRequest(request); Thread.sleep(random.nextInt(1000)); } }catch(InterruptedException { } }} |
工作线程:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
package whut.threadpool;//具体工作线程public class WorkerThread extends Thread{ private final Channel public WorkerThread(String { super(name); this.channel=channel; } public void run() { while(true) { Request request.execute(); } }} |
线程池实例2:
工作线程:
利用同步块来处理,利用Vector来存储客户端请求。在Channel有缓存请求方法和处理请求方法,利用生成者与消费者模式来处理存储请求,利用正向等待来判断任务池的非空状态。
这种实例,可以借鉴到网络ServerSocket处理用户请求的模式中,有很好的扩展性与实用性。
利用Vector来存储,依旧是每次集合的最后一个位置添加请求,从开始位置移除请求来处理。
Channel参与者:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
package whut.threadpool2;import java.util.Vector;/* * * * * * */public class Channel public final static int THREAD_COUNT=4; public static void main(String[] //定义两个集合,一个是存放客户端请求的,利用Vector, //一个是存储线程的,就是线程池中的线程数目 //Vector是线程安全的,它实现了Collection和List //Vector //它包含可以使用整数索引进行访问的组件。但Vector //以适应创建 //Collection中主要包括了list相关的集合以及set相关的集合,Queue相关的集合 //注意:Map不是Collection的子类,都是java.util.*下的同级包 Vectornew Vector(); //工作线程,初始分配一定限额的数目 WorkerThread[]new WorkerThread[THREAD_COUNT]; //初始化启动工作线程 for(int i=0;i<workers.length;i++) { workers[i]=new WorkerThread(pool); workers[i].start(); } //接受新的任务,并且将其存储在Vector中 Objectnew Object();//模拟的任务实体类 //此处省略具体工作 //在网络编程中,这里就是利用ServerSocket来利用ServerSocket.accept接受一个Socket从而唤醒线程 //当有具体的请求达到 synchronized(pool) { pool.add(pool.size(), pool.notifyAll();//通知所有在pool } //注意上面这步骤添加任务池请求,以及通知线程,都可以放在工作线程内部实现 //只需要定义该方法为static,在方法体用同步块,且共享的线程池也是static即可 //下面这步,可以有可以没有根据实际情况 //取消等待的线程 for(int i=0;i<workers.length;i++) { workers[i].interrupt(); } }} |
工作线程:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
|
package whut.threadpool2;import java.util.List;public class WorkerThread extends Thread private List//任务请求池 private static int fileCompressed=0;//所有实例共享的 public WorkerThread(List { this.pool=pool; } //利用静态synchronized来作为整个synchronized类方法,仅能同时一个操作该类的这个方法 private static synchronized void incrementFilesCompressed() { fileCompressed++; } public void run() { //保证无限循环等待中 while(true) { //共享互斥来访问pool变量 synchronized(pool) { //利用多线程设计模式中的 //Guarded while(pool.isEmpty()) { try{ pool.wait();//进入pool的wait }catch(InterruptedException { } } //当线程被唤醒,需要重新获取pool的锁, //再次继续执行synchronized代码块中其余的工作 //当不为空的时候,继续再判断是否为空,如果不为空,则跳出循环 //必须先从任务池中移除一个任务来执行,统一用从末尾添加,从开始处移除 pool.remove(0);//获取任务池中的任务,并且要进行转换 } //下面是线程所要处理的具体工作 } }} |
Java多线程设计模式之线程池模式的更多相关文章
- Java多线程设计模式(4)线程池模式
前序: Thread-Per-Message Pattern,是一种对于每个命令或请求,都分配一个线程,由这个线程执行工作.它将“委托消息的一端”和“执行消息的一端”用两个不同的线程来实现.该线程模式 ...
- Java多线程系列--“JUC线程池”06之 Callable和Future
概要 本章介绍线程池中的Callable和Future.Callable 和 Future 简介示例和源码分析(基于JDK1.7.0_40) 转载请注明出处:http://www.cnblogs.co ...
- Java多线程系列--“JUC线程池”02之 线程池原理(一)
概要 在上一章"Java多线程系列--“JUC线程池”01之 线程池架构"中,我们了解了线程池的架构.线程池的实现类是ThreadPoolExecutor类.本章,我们通过分析Th ...
- Java多线程系列--“JUC线程池”03之 线程池原理(二)
概要 在前面一章"Java多线程系列--“JUC线程池”02之 线程池原理(一)"中介绍了线程池的数据结构,本章会通过分析线程池的源码,对线程池进行说明.内容包括:线程池示例参考代 ...
- Java多线程系列--“JUC线程池”04之 线程池原理(三)
转载请注明出处:http://www.cnblogs.com/skywang12345/p/3509960.html 本章介绍线程池的生命周期.在"Java多线程系列--“基础篇”01之 基 ...
- Java多线程系列--“JUC线程池”05之 线程池原理(四)
概要 本章介绍线程池的拒绝策略.内容包括:拒绝策略介绍拒绝策略对比和示例 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3512947.html 拒绝策略 ...
- 转:java多线程CountDownLatch及线程池ThreadPoolExecutor/ExecutorService使用示例
java多线程CountDownLatch及线程池ThreadPoolExecutor/ExecutorService使用示例 1.CountDownLatch:一个同步工具类,它允许一个或多个线程一 ...
- Java多线程-新特性-线程池
Sun在Java5中,对Java线程的类库做了大量的扩展,其中线程池就是Java5的新特征之一,除了线程池之外,还有很多多线程相关的内容,为多线程的编程带来了极大便利.为了编写高效稳定可靠的多线程程序 ...
- Java多线程之细说线程池
前言 在认识线程池之前,我们需要使用线程就去创建一个线程,但是我们会发现有一个问题: 如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因 ...
- Java多线程系列--“JUC线程池”01之 线程池架构
概要 前面分别介绍了"Java多线程基础"."JUC原子类"和"JUC锁".本章介绍JUC的最后一部分的内容——线程池.内容包括:线程池架构 ...
随机推荐
- 【YashanDB知识库】EXP导致主机卡死问题
问题现象 问题单:exp导出全库1主2备主节点执行,DMP文件30G左右系统卡死,发生主备切换 现象: exp sys/Cod-2022 file=bim20240402.dmp full=y 服务器 ...
- Angular 18+ 高级教程 – Component 组件 の Angular Component vs Web Component
前言 在 初识 Angular 中我有提到, Angular 团队是一群不爱创新.爱 follow 标准.爱小题大做的一群人. 所以,要理解 Angular Component,我们就非得要先搞懂远古 ...
- HTML & CSS – Responsive Image 响应式图片 (完整版)
前言 之前就有写过关于 Retina 和 Responsive Image 响应式图片 (responsive image) Retina 显示屏 但写的太烂了, 所以有了后来的 屏幕, 打印, 分辨 ...
- ASP.NET Core – Web API Versioning
前言 项目持续维护, API 就需要版本控制. ASP.NET Core 有官方的插件专门处理 API 版本控制. 主要参考 Your Guide to REST API Versioning in ...
- "放开那代码让我来!"——Cursor帮你写代码的奇妙之旅
让我们开门见山:编程很酷,但也很折磨人.那些长时间盯着屏幕,debug无休止的日子,只有程序员懂得它的酸爽.而就在这个编程焦虑的世界中,Cursor横空出世,带着一系列魔法功能,如同你手中的一根智能魔 ...
- Nacos 配置加密
Nacos 配置加密 nacos配置加密官网 官网介绍太简单,而且GitHub 网络受限,随缘访问.Gitee 发现有镜像仓库,同步的最新版本 Gitee nacos 镜像仓库 但是官网中提到的加密插 ...
- schedtune.colocatte的作用
schedtune.colocate 参数主要通过 /proc/sys/kernel/schedtune.colocate 接口进行配置.具体的使用方式和可选参数如下: 使用方法 你可以通过以下命令来 ...
- js模拟二维数组求和
JavaScri实际上没有二维数组的概念,但是由于js变量是松散的,所以能设置数组元素为数组来模拟二维数组,以此类推,可以模拟多维数组. /* 需求:模拟了3 * 3数组求右上三角元素之和1 + 3 ...
- 将数组数据转化成树形结构 tranListToTreeData
export function tranListToTreeData(list, rootValue) { // list是最完整的数组 let arr = []; // 记录儿子 list.forE ...
- nodejs 和 npm 版本对应关系
一.nodejs 和 npm 的版本是有适配的 首先看下官网列明的大概匹配关系: 官网链接地址:https://nodejs.org/zh-cn/about/previous-releases 可以查 ...