[离线计算-Spark|Hive] 数据近实时同步数仓方案设计
背景
最近阅读了大量关于hudi相关文章, 下面结合对Hudi的调研, 设计一套技术方案用于支持 MySQL数据CDC同步至数仓中,避免繁琐的ETL流程,借助Hudi的upsert, delete 能力,来缩短数据的交付时间.
组件版本:
- Hadoop 2.6.0
- Hive 1.1.0
- hudi 0.7.0
- spark 2.4.6
架构设计

- 使用canal(阿里巴巴MySQL Binlog增量订阅&消费组件)dump mysql binlog 数据
- 采集后将binlog 数据采集到kafka中, 按照库名创建topic, 并按照表名将数据写入topic 固定分区
- spark 消费数据将数据生成DF
- 将DF数据写入hudi表
- 同步hudi元数据到hive中
写入主要分成两部分全量数据和增量数据:
历史数据通过bulkinsert 方式 同步写入hudi
增量数据直接消费写入使用hudi的upsert能力,完成数据合并
写入hudi在hdfs的格式如下:

hudi
hudi 如何处理binlog upsert,delete 事件进行数据的合并?
upsert好理解, 依赖本身的能力.
针对mysql binlog的delete 事件,使用记录级别删除:
需要在数据中添加 '_HOODIE_IS_DELETED' 且值为true的列
需要在dataFrame中添加此列,如果此值为false或者不存在则当作常规写入记录
如果此值为true则为删除记录
示例代码如下:
StructField(_HOODIE_IS_DELETED, DataTypes.BooleanType, true, Metadata.empty());
dataFrame.write.format("org.apache.hudi")
.option("hoodie.table.name", "test123")
.option("hoodie.datasource.write.operation", "upsert")
.option("hoodie.datasource.write.recordkey.field", "uuid")
.option("hoodie.datasource.write.partitionpath.field", "partitionpath")
.option("hoodie.datasource.write.storage.type", "COPY_ON_WRITE")
.option("hoodie.datasource.write.precombine.field", "ts")
.mode(Append)
.save(basePath)
写入hudi及同步数据至hive,需要注意的事情和如何处理?
声明为hudi表的path路径, 非分区表 使用tablename/, 分区表根据分区路径层次定义/个数
在创建表时需添加 TBLPROPERTIES 'spark.sql.sources.provider'='hudi' 声明为datasource为hudi类型的表
hudi如何处理新增字段?
当使用Spark查询Hudi数据集时,当数据的schema新增时,会获取单个分区的parquet文件来推导出schema,若变更schema后未更新该分区数据,那么新增的列是不会显示,否则会显示该新增的列;若未更新该分区的记录时,那么新增的列也不会显示,可通过 mergeSchema来控制合并不同分区下parquet文件的schema,从而可达到显示新增列的目的
hudi 写入时指定mergeSchema参数 为true
spark如何实现hudi表数据的写入和读取?
Spark支持用户自定义的format来读取或写入文件,只需要实现对应的(RelationProvider、SchemaRelationProvider)等接口即可。而Hudi也自定义实现了 org.apache.hudi/ hudi来实现Spark对Hudi数据集的读写,Hudi中最重要的一个相关类为 DefaultSource,其实现了 CreatableRelationProvider#createRelation接口,并实现了读写逻辑
kyuubi
如何读取hudi表数据?
使用网易开源的kyuubi
kyuubi架构图:

支持HiveServer2 Thrift API协议,可以通过beeline 连接
hive: beeline -u jdbc:hive2://ip:10000 -n userName -p
kyuubi: beeline -u jdbc:hive2://ip:8333 -n userName -p
hudi 元数据使用hive metastore
spark来识别加载hudi表
实现hudi表与hive表关联查询
kyuubi 支持SparkContext的动态缓存,让用户不需要每次查询都动态创建SparkContext。作为一个应用在yarn 上一直运行,终止beeline 连接后,应用仍在运行,下次登录,使用SQL可以直接查询
总结
本文主要针对hudi进行调研, 设计MySQL CDC 近实时同步至数仓中方案, 写入主要利用hudi的upsert以及delete能力. 针对hudi 表的查询,引入kyuubi 框架,除 了增强平台 spark sql作为即席查询服务的能力外,同时支持查询hudi表,并可以实现hudi表与hive表的联合查询, 同时对原有hive相关服务没有太大影响.
参考
- https://blog.csdn.net/weixin_38166318/article/details/111825032
- https://blog.csdn.net/qq_37933018/article/details/120864648
- https://cxymm.net/article/qq_37933018/120864648
- https://www.jianshu.com/p/a271524adcc3
- https://jishuin.proginn.com/p/763bfbd65b70
[离线计算-Spark|Hive] 数据近实时同步数仓方案设计的更多相关文章
- 大数据分析处理框架——离线分析(hive,pig,spark)、近似实时分析(Impala)和实时分析(storm、spark streaming)
大数据分析处理架构图 数据源: 除该种方法之外,还可以分为离线数据.近似实时数据和实时数据.按照图中的分类其实就是说明了数据存储的结构,而特别要说的是流数据,它的核心就是数据的连续性和快速分析性: 计 ...
- 性能优化之永恒之道(实时sql优化vs业务字段冗余vs离线计算)
在项目中,随着时间的推移,数据量越来越大,程序的某些功能性能也可能会随之下降,那么此时我们不得不需要对之前的功能进行性能优化.如果优化方案不得当,或者说不优雅,那可能将对整个系统产生不可逆的严重影响. ...
- .Spark Streaming(上)--实时流计算Spark Streaming原理介
Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍 http://www.cnblogs.com/shishanyuan/p/474 ...
- 大数据入门第五天——离线计算之hadoop(上)概述与集群安装
一.概述 根据之前的凡技术必登其官网的原则,我们当然先得找到它的官网:http://hadoop.apache.org/ 1.什么是hadoop 先看官网介绍: The Apache™ Hadoop® ...
- Spark 介绍(基于内存计算的大数据并行计算框架)
Spark 介绍(基于内存计算的大数据并行计算框架) Hadoop与Spark 行业广泛使用Hadoop来分析他们的数据集.原因是Hadoop框架基于一个简单的编程模型(MapReduce),它支持 ...
- Spark大数据针对性问题。
1.海量日志数据,提取出某日访问百度次数最多的那个IP. 解决方案:首先是将这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中.注意到IP是32位的,最多有个2^32个IP.同样可以采 ...
- 剖析Elasticsearch集群系列之三:近实时搜索、深层分页问题和搜索相关性权衡之道
转载:http://www.infoq.com/cn/articles/anatomy-of-an-elasticsearch-cluster-part03 近实时搜索 虽然Elasticsearch ...
- 大数据-06-Spark之读写Hive数据
简介 Hive中的表是纯逻辑表,就只是表的定义等,即表的元数据.Hive本身不存储数据,它完全依赖HDFS和MapReduce.这样就可以将结构化的数据文件映射为为一张数据库表,并提供完整的SQL查询 ...
- 通过Flink实现个推海量消息数据的实时统计
背景 消息报表主要用于统计消息任务的下发情况.比如,单条推送消息下发APP用户总量有多少,成功推送到手机的数量有多少,又有多少APP用户点击了弹窗通知并打开APP等.通过消息报表,我们可以很直观地看到 ...
- 教你如何成为Spark大数据高手?
教你如何成为Spark大数据高手? Spark目前被越来越多的企业使用,和Hadoop一样,Spark也是以作业的形式向集群提交任务,那么如何成为Spark大数据高手?下面就来个深度教程. Spark ...
随机推荐
- 【主席树】P3834 【模板】可持久化线段树 2
P3834 [模板]可持久化线段树 2 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) #include <bits/stdc++.h> using namespace ...
- 关于为什么使用 ASCII GBK Unicode编码
关于为什么使用 ASCII GBK Unicode编码 由来:大家都知道计算机最早是美国人为了更加便捷的存储和计算数据发明的,但是呢计算机底层都是硬件,只能存储像0101这样的二进制数据,那美国人为了 ...
- [HCTF 2018]admin 1
[HCTF 2018]admin 1 < 文章中有有关flask session 文章 需要认真读一下> 1.信息搜集 由题意,注册admin 用户,回显 The username has ...
- 生产者消费者模式,以及基于BlockingQueue的快速实现
生产者消费者模式,以及基于BlockingQueue的快速实现什么是生产者消费者模式,简单来说就是有两个角色,一个角色主要负责生产数据,一个角色主要负责消费(使用)数据.那么生产者直接依赖消费者,然后 ...
- [TK] 一心净士 hzoj-tg-937-2
万元申万的(不是) 嗯... 另外,这道题其实叫一心净士(shi) 而不是一心净土. 剖析 我们注意到题目要让我们使最小的自然数最大,那么我们的每一个区间都要从零开始放. 显然,假如我们所有区间里最小 ...
- ceph-rbd和cephfs使用
目录 1 用户权限管理和授权流程 1.1 列出用户 1.2 用户管理 1.2.1 ceph auth add 1.2.3 ceph auth get-or-create 1.2.4 ceph auth ...
- centos7 nginx+php7yum安装
centos7 nginx+php7yum安装. 一.安装nginx 1.安装yum源 rpm -Uvh http://nginx.org/packages/centos/7/noarch/RPMS/ ...
- Java日期时间API系列40-----中文语句中的时间语义识别(time NLP)代码实现分析
从上篇 Java日期时间API系列39-----中文语句中的时间语义识别(time NLP 输入一句话,能识别出话里的时间)原理分析 中得知解析的主要步骤分为三步: (1)加载正则文件 (2)解析中文 ...
- ByConity与主流开源OLAP引擎(Clickhouse、Doris、Presto)性能对比分析
引言: 随着数据量和数据复杂性的不断增加,越来越多的企业开始使用OLAP(联机分析处理)引擎来处理大规模数据并提供即时分析结果.在选择OLAP引擎时,性能是一个非常重要的因素. 因此,本文将使用TPC ...
- 010 Python 重中之重的变量
#!/usr/bin/env python # -*- coding:utf-8 -*- # Datatime:2022/7/16 20:32 # Filename:010 Python 重中之重的变 ...