【LOJ】#6436. 「PKUSC2018」神仙的游戏
题解
感觉智商为0啊QAQ
显然对于一个长度为\(len\)的border,每个点同余\(n - len\)的部分必然相等
那么我们求一个\(f[a]\)数组,如果存在\(s[x] = 0\)且\(s[y] = 1\)且\(|x - y| = a\)
这个很好求,只要把0和1分别挑出来,NTT卷一下就好了
一个\(len\)合法,即它的\(n - len\)的倍数\(k\),\(f[k]\)都等于0
代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define mo 974711
#define MAXN 500005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 998244353,MAXL = (1 << 20);
int W[MAXL + 5],f[MAXL + 5],g[MAXL + 5],N;
char s[MAXN];
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
int fpow(int x,int c) {
int res = 1,t = x;
while(c) {
if(c & 1) res = mul(res,t);
t = mul(t,t);
c >>= 1;
}
return res;
}
void NTT(int *p,int len,int on) {
for(int i = 1 , j = len >> 1 ; i < len - 1 ; ++i) {
if(i < j) swap(p[i],p[j]);
int k = (len >> 1);
while(j >= k) {
j -= k;
k >>= 1;
}
j += k;
}
for(int h = 2 ; h <= len ; h <<= 1) {
int wn = W[(MAXL + MAXL / h * on) % MAXL];
for(int k = 0 ; k < len ; k += h) {
int w = 1;
for(int j = k ; j < k + h / 2 ; ++j) {
int u = p[j],t = mul(p[j + h / 2],w);
p[j] = inc(u,t);
p[j + h / 2] = inc(u,MOD - t);
w = mul(w,wn);
}
}
}
if(on == -1) {
int InvL = fpow(len,MOD - 2);
for(int i = 0 ; i < len ; ++i) p[i] = mul(p[i],InvL);
}
}
void Init() {
W[0] = 1;W[1] = fpow(3,(MOD - 1) / MAXL);
for(int i = 2 ; i < MAXL ; ++i) {
W[i] = mul(W[i - 1],W[1]);
}
scanf("%s",s + 1);
}
void Solve() {
int t = 1;
N = strlen(s + 1);
while(t <= 2 * N) t <<= 1;
for(int i = 1 ; i <= N ; ++i) {
f[i] = (s[i] == '1');
g[i] = (s[N - i + 1] == '0');
}
NTT(f,t,1);NTT(g,t,1);
for(int i = 0 ; i < t; ++i) f[i] = mul(f[i],g[i]);
NTT(f,t,-1);
int64 ans = 1LL * N * N;
for(int i = 1 ; i < N ; ++i) {
int t = i;
bool flag = 0;
while(t < N) {
if(f[N - t + 1] || f[N + t + 1]) {flag = 1;break;}
t += i;
}
if(!flag) ans ^= 1LL * (N - i) * (N - i);
}
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
}
【LOJ】#6436. 「PKUSC2018」神仙的游戏的更多相关文章
- LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)
题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...
- LOJ 6436 「PKUSC2018」神仙的游戏——思路+卷积
题目:https://loj.ac/problem/6436 看题解才会. 有长为 i 的 border ,就是有长为 n-i 的循环节. 考虑如果 x 位置上是 0 . y 位置上是 1 ,那么长度 ...
- loj#6436. 「PKUSC2018」神仙的游戏(生成函数)
题意 链接 Sol 生成函数题都好神仙啊qwq 我们考虑枚举一个长度\(len\).有一个结论是如果我们按\(N - len\)的余数分类,若同一组内的全为\(0\)或全为\(1\)(?不算),那么存 ...
- LOJ #6436. 「PKUSC2018」神仙的游戏
题目分析 通过画图分析,如果存在border长度为len,则原串一定是长度为n-len的循环串. 考虑什么时候无法形成长度为len的循环串. 显然是两个不同的字符的距离为len的整数倍时,不存在这样的 ...
- loj#6436. 「PKUSC2018」神仙的游戏(NTT)
题面 传送门 题解 一旦字符串踏上了通配符的不归路,它就永远脱离了温暖的字符串大家庭的怀抱 用人话说就是和通配符扯上关系的字符串就不是个正常的字符串了比如说这个 让我们仔细想想,如果一个长度为\(le ...
- 「PKUSC2018」神仙的游戏
题目链接 比如说上面\(|S|\)为12的字符串,我们欲求出\(f(9)\)的值,那么上面相同颜色的字符必须两两能够匹配.也就是说,同种颜色的字符集里不能同时出现0和1.如果只考虑同种颜色集里相邻的两 ...
- LOJ6436. 「PKUSC2018」神仙的游戏 [NTT]
传送门 思路 首先通过各种手玩/找规律/严谨证明,发现当\(n-i\)为border当且仅当对于任意\(k\in[0,i)\),模\(i\)余\(k\)的位置没有同时出现0和1. 换句话说,拿出任意一 ...
- LOJ #6435. 「PKUSC2018」星际穿越(倍增)
题面 LOJ#6435. 「PKUSC2018」星际穿越 题解 参考了 这位大佬的博客 这道题好恶心啊qwq~~ 首先一定要认真阅读题目 !! 注意 \(l_i<r_i<x_i\) 这个条 ...
- LOJ #6432. 「PKUSC2018」真实排名(组合数)
题面 LOJ #6432. 「PKUSC2018」真实排名 注意排名的定义 , 分数不小于他的选手数量 !!! 题解 有点坑的细节题 ... 思路很简单 , 把每个数分两种情况讨论一下了 . 假设它为 ...
随机推荐
- 前端学习 -- Css -- 高度坍塌问题的产生以及解决
在文档流中,父元素的高度默认是被子元素撑开的,也就是子元素多高,父元素就多高. 但是当为子元素设置浮动以后,子元素会完全脱离文档流,此时将会导致子元素无法撑起父元素的高度,导致父元素的高度塌陷. 由于 ...
- Mysql(三)约束
一.视图 视图是虚拟的数据表,本身不存储数据,而是提供数据的逻辑 展示. 1.创建视图 create view stu_view as select s1.id, s1.name, s2. ...
- POJ 1502 MPI Maelstrom / UVA 432 MPI Maelstrom / SCU 1068 MPI Maelstrom / UVALive 5398 MPI Maelstrom /ZOJ 1291 MPI Maelstrom (最短路径)
POJ 1502 MPI Maelstrom / UVA 432 MPI Maelstrom / SCU 1068 MPI Maelstrom / UVALive 5398 MPI Maelstrom ...
- disabled属性对form表单向后台传值的影响
在form表单里,如果对input加入disabled="disabled"或disabled="true"等属性,form表单提交的时候,就不会传值到后台. ...
- kubeadm部署Kubernetes集群
Preface 通过kubeadm管理工具部署Kubernetes集群,相对离线包的二进制部署集群方式而言,更为简单与便捷.以下为个人学习总结: 两者区别在于前者部署方式使得大部分集群组件(Kube- ...
- python的__get__、__set__、__delete__(1)
内容: 描述符引导 摘要 定义和介绍 描述符协议 调用描述符 样例 Properties 函数和 ...
- 第8月第15天 app支持后台播放
1. AVAudioSession *audioSession = [AVAudioSession sharedInstance]; //默认情况下扬声器播放 [audioSession setCat ...
- DSO 优化代码中的 Schur Complement
接上一篇博客<直接法光度误差导数推导>,DSO 代码中 CoarseInitializer::trackFrame 目的是优化两帧(ref frame 和 new frame)之间的相对状 ...
- Nagios介绍
Nagios介绍 Nagios是一款功能强大.优秀的开源监控系统,它能够让你发现和解决IT架构中存在的问题,避免这些问题影响到关键业务流程. Nagios最早于1999年发布,它在开源社区的影响力是相 ...
- 八、mini2440裸机程序之UART(2)UART0与PC串口通信【转】
转自:http://blog.csdn.net/shengnan_wu/article/details/8309417 版权声明:本文为博主原创文章,未经博主允许不得转载. 1.相关原理图 2.相关寄 ...