1111. Online Map (30)
Input our current position and a destination, an online map can recommend several paths. Now your job is to recommend two paths to your user: one is the shortest, and the other is the fastest. It is guaranteed that a path exists for any request.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers N (2 <= N <= 500), and M, being the total number of streets intersections on a map, and the number of streets, respectively. Then M lines follow, each describes a street in the format:

V1 V2 one-way length time

where V1 and V2 are the indices (from 0 to N-1) of the two ends of the street; one-way is 1 if the street is one-way from V1 to V2, or 0 if not; length is the length of the street; and time is the time taken to pass the street.

Finally a pair of source and destination is given.

Output Specification:

For each case, first print the shortest path from the source to the destination with distance D in the format:

Distance = D: source -> v1 -> … -> destination

Then in the next line print the fastest path with total time T:

Time = T: source -> w1 -> … -> destination

In case the shortest path is not unique, output the fastest one among the shortest paths, which is guaranteed to be unique. In case the fastest path is not unique, output the one that passes through the fewest intersections, which is guaranteed to be unique.

In case the shortest and the fastest paths are identical, print them in one line in the format:

Distance = D; Time = T: source -> u1 -> … -> destination

知识点: Dijkstra算法; DFS算法

思路:

第一是求最短路径,有相同的则输出时间最短;利用Dijkstra求解,更新最短路时,如果最短路相同,则比较时间

 if(!visited[i]){
if(minl[i]>minD+G_l[minV][i]){
minl[i]=minD+G_l[minV][i];
mint[i]=mint[minV]+G_t[minV][i];
pre_shorest[i]=minV;
}else if(minl[i]==minD+G_l[minV][i]&&
mint[i]>mint[minV]+G_t[minV][i]){
mint[i]=mint[minV]+G_t[minV][i];
pre_shorest[i]=minV;
}
}

第二是求最快路,如果有相同的,输出节点最少的:用Dijkstra算法,设立容器pre来储存每个节点的优选前去节点;然后用DFS来遍历每条路径,选出最少节点的

 for(int i=;i<n;i++){
if(!visited[i]){
if(mint[i]>minD+G_t[minV][i]){
mint[i]=mint[minV]+G_t[minV][i];
pre_faster[i].clear();
pre_faster[i].push_back(minV);
}else if(mint[i]==minD+G_t[minV][i]){
pre_faster[i].push_back(minV);
}
}
}

最后,vector可以比较,相同的情况特殊处理

Sample Input 1:
10 15
0 1 0 1 1
8 0 0 1 1
4 8 1 1 1
3 4 0 3 2
3 9 1 4 1
0 6 0 1 1
7 5 1 2 1
8 5 1 2 1
2 3 0 2 2
2 1 1 1 1
1 3 0 3 1
1 4 0 1 1
9 7 1 3 1
5 1 0 5 2
6 5 1 1 2
3 5
Sample Output 1:
Distance = 6: 3 -> 4 -> 8 -> 5
Time = 3: 3 -> 1 -> 5
Sample Input 2:
7 9
0 4 1 1 1
1 6 1 1 3
2 6 1 1 1
2 5 1 2 2
3 0 0 1 1
3 1 1 1 3
3 2 1 1 2
4 5 0 2 2
6 5 1 1 2
3 5
Sample Output 2:
Distance = 3; Time = 4: 3 -> 2 -> 5

#include <iostream>
#include <string>
#include <vector>
using namespace std;
const int maxn = 550;
const int inf = 999999; int n,m;
int G_l[maxn][maxn];
int G_t[maxn][maxn];
int minl[maxn];
int mint[maxn];
int visited[maxn];
int pre_shorest[maxn];
vector<int> pre_faster[maxn];
vector<int> s_path;
vector<int> f_path;
vector<int> f_tmpp;
int minsize; int dijkstra_shorest(int start,int end){
fill(pre_shorest, pre_shorest+maxn, -1);
fill(minl,minl+maxn,inf);
fill(mint,mint+maxn,inf);
fill(visited,visited+maxn,0);
minl[start] = 0;
for(int i=0;i<n;i++){
int minV=-1, minD=inf;
for(int i=0;i<n;i++){
if(minl[i]<minD && !visited[i]){
minV=i;
minD=minl[i];
}
}
if(minV==-1) break;
visited[minV] = 1;
for(int i=0;i<n;i++){
if(!visited[i]){
if(minl[i]>minD+G_l[minV][i]){
minl[i]=minD+G_l[minV][i];
mint[i]=mint[minV]+G_t[minV][i];
pre_shorest[i]=minV;
}else if(minl[i]==minD+G_l[minV][i]&&
mint[i]>mint[minV]+G_t[minV][i]){
mint[i]=mint[minV]+G_t[minV][i];
pre_shorest[i]=minV;
}
}
}
}
int ptr = end;
while(ptr != -1){
//printf(" %d\n",ptr);
s_path.push_back(ptr);
ptr=pre_shorest[ptr];
}
return minl[end];
} void DFS(int v,int start){
f_tmpp.push_back(v);
if(v==start){
if(f_tmpp.size()<minsize){
f_path=f_tmpp;
minsize=f_tmpp.size();
}
f_tmpp.pop_back();
return;
}
for(int i=0;i<pre_faster[v].size();i++){
DFS(pre_faster[v][i], start);
}
f_tmpp.pop_back();
} int dijkstra_fastest(int start,int end){
fill(mint,mint+maxn,inf);
fill(visited,visited+maxn,0);
mint[start] = 0;
for(int i=0;i<n;i++){
int minV=-1, minD=inf;
for(int i=0;i<n;i++){
if(mint[i]<minD && !visited[i]){
minV=i;
minD=mint[i];
}
}
if(minV==-1) break;
//printf(". %d\n",minV);
visited[minV] = 1;
for(int i=0;i<n;i++){
if(!visited[i]){
if(mint[i]>minD+G_t[minV][i]){
mint[i]=mint[minV]+G_t[minV][i];
pre_faster[i].clear();
pre_faster[i].push_back(minV);
}else if(mint[i]==minD+G_t[minV][i]){
pre_faster[i].push_back(minV);
}
}
}
}
minsize = inf;
DFS(end,start);
for(int i=0;i<f_path.size();i++){
//printf("%d\n",f_path[i]);
}
return mint[end];
} int main(int argc, char *argv[]) {
fill(G_l[0],G_l[0]+maxn*maxn,inf);
fill(G_t[0],G_t[0]+maxn*maxn,inf); scanf("%d %d",&n,&m);
int v1,v2,oneway,len,tim;
for(int i=0;i<m;i++){
scanf("%d %d %d %d %d",&v1,&v2,&oneway,&len,&tim);
if(!oneway){
G_l[v1][v2]=len;
G_l[v2][v1]=len;
G_t[v1][v2]=tim;
G_t[v2][v1]=tim;
}else{
G_l[v1][v2]=len;
G_t[v1][v2]=tim;
}
}
scanf("%d %d",&v1,&v2); int D = dijkstra_shorest(v1,v2); int T = dijkstra_fastest(v1,v2); if(s_path==f_path){
printf("Distance = %d; Time = %d: ",D,T);
for(int i=s_path.size()-1;i>=0;i--){
printf("%d",s_path[i]);
if(i!=0) printf(" -> ");
}
}else{
printf("Distance = %d: ",D);
for(int i=s_path.size()-1;i>=0;i--){
printf("%d",s_path[i]);
if(i!=0) printf(" -> ");
}
printf("\nTime = %d: ",T);
for(int i=f_path.size()-1;i>=0;i--){
printf("%d",f_path[i]);
if(i!=0) printf(" -> ");
}
}
}

 

1111 Online Map (30 分)的更多相关文章

  1. 【PAT甲级】1111 Online Map (30分)(dijkstra+路径记录)

    题意: 输入两个正整数N和M(N<=500,M<=N^2),分别代表点数和边数.接着输入M行每行包括一条边的两个结点(0~N-1),这条路的长度和通过这条路所需要的时间.接着输入两个整数表 ...

  2. 1111 Online Map (30)(30 分)

    Input our current position and a destination, an online map can recommend several paths. Now your jo ...

  3. PAT (Advanced Level) 1111. Online Map (30)

    预处理出最短路再进行暴力dfs求答案会比较好.直接dfs效率太低. #include<cstdio> #include<cstring> #include<cmath&g ...

  4. 1111. Online Map (30)

    Input our current position and a destination, an online map can recommend several paths. Now your jo ...

  5. PAT Advanced 1111 Online Map (30) [Dijkstra算法 + DFS]

    题目 Input our current position and a destination, an online map can recommend several paths. Now your ...

  6. PAT甲题题解-1111. Online Map (30)-PAT甲级真题(模板题,两次Dijkstra,同时记下最短路径)

    题意:给了图,以及s和t,让你求s到t花费的最短路程.最短时间,以及输出对应的路径.   对于最短路程,如果路程一样,输出时间最少的. 对于最短时间,如果时间一样,输出节点数最少的.   如果最短路程 ...

  7. PAT-1111 Online Map (30分) 最短路+dfs

    明天就要考PAT,为了应付期末已经好久没有刷题了啊啊啊啊,今天开了一道最短路,状态不是很好 1.没有读清题目要求,或者说没有读完题目,明天一定要注意 2.vis初始化的时候从1初始化到n,应该从0开始 ...

  8. PAT甲级——1111 Online Map (单源最短路经的Dijkstra算法、priority_queue的使用)

    本文章同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90041078   1111 Online Map (30 分) ...

  9. 1111 Online Map (30 分)

    1111 Online Map (30 分) Input our current position and a destination, an online map can recommend sev ...

随机推荐

  1. Java(JFinal)实现sqlserver2017的数据库的备份与恢复

    1.连接数据库的代码: package com.once.xfd.dbutil; import java.sql.Connection; import java.sql.DriverManager; ...

  2. Memcached使用与纠错(附代码和相关dll)

    今天没事研究一下,谁想到遇到了几个dll找不到,网上也不好找到,索性功夫不负有心人.贴出代码和相关的dll Memcached代码:(网上都是的,很多人都保存了这个代码) using Memcache ...

  3. [z]分区truncate操作的介绍及对全局索引和空间释放影响的案例解析

    [z]https://www.2cto.com/database/201301/181226.html 环境: [sql] [oracle@localhost ~]$ uname -r 2.6.18- ...

  4. 小程序41028 form_id无效

    如果参数都没有问题的话,那么我的问题来了,你是发给用户自己么?如果不是,那就找到原因了,必须发给本人才可以...我淌过无数条坑,这个坑我服了...官方文档上写的不是很清楚

  5. Linux_(1)基本命令(上)

    一.基本命令1.我是谁 whoami --who am i2.谁在线 who w3.显示当前路径(定位) pwd4.切换目录 cd ~返回主目录 cd ..返回上一级目录5.查看某个目录中的子目录和文 ...

  6. js iterable类型

    遍历Array可以采用下标循环,遍历Map和Set就无法使用下标.为了统一集合类型,ES6标准引入了新的iterable类型,Array.Map和Set都属于iterable类型. 具有iterabl ...

  7. 使用Maven插件快捷打包发布远程Docker镜像 dockerfile-maven-plugin

    1.开放远程Docker远程访问端口 # vim /lib/systemd/system/docker.service ExecStart=/usr/bin/dockerd -H tcp://0.0. ...

  8. hdu (kruska and prime) 继续畅通工程

    题目http://acm.hdu.edu.cn/showproblem.php?pid=1879 复习一下最小生成树的两个基本算法. 由于存在道路是否已修建的问题,如果已修建,那么该条道路的成本即为0 ...

  9. poj 1088 (dfs+记忆化) 滑雪

    题目;http://poj.org/problem?id=1088 感觉对深搜还不太熟练,所以练习一下,类似于连连看的那题,注意的是所求的是最大达长度,并不是从最大的或者最小的点出发得到的就是最长的路 ...

  10. java1.8 版本改成 java1.7版本

    以前先安装的java1.7 大部分程序应该都是只支持1.7 不支持1.8 但是因为要跑一个别人的项目 要求是java1.8 所以想在电脑上同时装1.7和1.8 到官网上下载1.8 安装 安装完成后 并 ...