石子合并

区间$dp$,顾名思义,是以区间为阶段的一种线性$dp$的拓展

状态常定义为$f[i][j]$,表示区间$[i,j]$的某种解;

通常先枚举区间长度,再枚举左端点,最后枚举断点$(k)$

石子合并便是一道经典的区间$dp$

#include <bits/stdc++.h>
#define read read()
#define up(i,l,r) for(int i = (l);i <= (r); i++)
#define inf 0x3f3f3f3f
using namespace std;
int read
{
int x = ;char ch = getchar();
while(ch < || ch > ) ch = getchar();
while(ch>= && ch <= ) {x = * x + ch - ; ch = getchar();}
return x;
}
const int N = ;
int n,cnt[N],sum[N],f1[N][N],f2[N][N];
int main()
{
freopen("stone.in","r",stdin);
n = read;
//memset(f2,0x3f,sizeof(f2));
up(i,,n) cnt[i] = cnt[i + n] = read;//,f1[i][i] = 0,f2[i][i] = 0; ->
up(i,,((n<<)-)) sum[i] = sum[i - ] + cnt[i];//前缀和 ->[1,2n-1] 处理环;
up(L,,n)//[2,n] //枚举区间长度
up(i,,( (n<<) - L + ) ) //枚举左端点
{
int j = i + L - ;//右端点;
f1[i][j] = ; f2[i][j] = inf;//初始化;
up(k,i,(j - ))//枚举断点 [i,j)
{
f1[i][j] = max(f1[i][j],f1[i][k] + f1[k + ][j]);
f2[i][j] = min(f2[i][j],f2[i][k] + f2[k + ][j]);
}
f1[i][j] += (sum[j] - sum[i - ]);
f2[i][j] += (sum[j] - sum[i - ]);//!!加上这次合并[i,j]的分数;
}
int max_ans = ,min_ans = inf;
up(i,,n)//[1,n]
{
int j = i + n - ;
max_ans = max(max_ans,f1[i][j]);
min_ans = min(min_ans,f2[i][j]);
}
printf("%d\n",min_ans);
printf("%d",max_ans);
return ;
}

区间DP初探 P1880 [NOI1995]石子合并的更多相关文章

  1. 【区间dp】- P1880 [NOI1995] 石子合并

    记录一下第一道ac的区间dp 题目:P1880 [NOI1995] 石子合并 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码: #include <iostream> ...

  2. 区间DP小结 及例题分析:P1880 [NOI1995]石子合并,P1063 能量项链

    区间类动态规划 一.基本概念 区间类动态规划是线性动态规划的拓展,它在分阶段划分问题时,与阶段中元素出现的顺序和由前一阶段的那些元素合并而来由很大的关系.例如状态f [ i ][ j ],它表示以已合 ...

  3. P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]

    P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...

  4. P1880 [NOI1995]石子合并 区间dp

    P1880 [NOI1995]石子合并 #include <bits/stdc++.h> using namespace std; ; const int inf = 0x3f3f3f3f ...

  5. 洛谷 P1880 [NOI1995]石子合并 题解

    P1880 [NOI1995]石子合并 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试 ...

  6. HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结

    题意:给定一个字符串 输出回文子序列的个数    一个字符也算一个回文 很明显的区间dp  就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...

  7. 洛谷 P1880 [NOI1995] 石子合并(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...

  8. P1880 [NOI1995]石子合并【区间DP】

    题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...

  9. P1880 [NOI1995]石子合并 区间dp+拆环成链

    思路 :一道经典的区间dp  唯一不同的时候 终点和起点相连  所以要拆环成链  只需要把1-n的数组在n+1-2*n复制一遍就行了 #include<bits/stdc++.h> usi ...

随机推荐

  1. 全国高校绿色计算大赛 预赛第一阶段(C++)第3关:旋转数组

    挑战任务 在计算机中,一张数字图像,可以被看做是一个矩阵或者说数组. 学过线性代数的同学对矩阵肯定不陌生.一般来说,图像是一个标准的矩形,有着宽度(width)和高度(height).而矩阵有着行(r ...

  2. poj1256(贪心+并查集)

    题目链接:http://poj.org/problem?id=1456 题意:给n件商品的价格和卖出截至时间,每一个单位时间最多只能卖出一件商品,求能获得的最大利润. 思路:首先是贪心,为获得最大利润 ...

  3. poj 1789 prime

    链接:Truck History - POJ 1789 - Virtual Judge  https://vjudge.net/problem/POJ-1789 题意:先给出一个n,代表接下来字符串的 ...

  4. Linux sudo用法与配置

    Linux环境:CentOS 6.7 结构说明 可以通过编辑文件/etc/sudoers来配置,通常使用visudo命令来进行修改,因为如果你修改的格式不符合它会进行提示.接下来就通过一个格式来了解它 ...

  5. e-olymp Problem4196 Chocolate bars

    吐槽一下,这个OJ的题目真的是阅读理解题.代码非常短,就是题目难理解.心累. 传送门:点我 Chocolate bars It is hard to overestimate the role of ...

  6. TZOJ 2999 Network(连通图割点数量)

    描述 A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connecting ...

  7. UVa 548 Tree(二叉树最短路径)

    You are to determine the value of the leaf node in a given binary tree that is the terminal node of ...

  8. Python: print stdout同行输出

    项目中发现,PyCharm运行youtube_dl下载,其进度在同行显示,即替换上行输出. 稍做研究,记录下来: #coding=utf-8 from __future__ import print_ ...

  9. Java项目学习笔记(一)

    2017/2/27 一.target属性 <a>标签的target属性规定在什么地方打开该链接文档. 1.打开新窗口,将文档重定向到一个单独的窗口. <a href="a. ...

  10. vs调试的时候出错:无法启动程序,操作在当前状态中是非法的

    工具--选项--调试--常规--启用asp.net的JavaScript调试(chrome和ie)去掉勾选