介绍一种解决最近公共祖先的在线算法,倍增,它是建立在任意整数的二进制拆分之上。

 

代码:

 

 //LCA:Doubly

 #include<cstdio>
#define swap(a,b) a^=b^=a^=b
#define maxn 500010
using namespace std; int n,m,s,tot,head[maxn],deep[maxn],p[maxn][];
struct node
{
int nxt,to;
}edge[maxn<<]; int read()
{
int x=,f=;
char c=getchar();
while (c<||c>)
f=c=='-'?-:,c=getchar();
while (c>=&&c<=)
x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
} void write(int x)
{
if (x<)
x=-x,putchar('-');
if (x>=)
write(x/);
putchar(x%+);
} void add(int a,int b)
{
edge[++tot]=(node){head[a],b};
head[a]=tot;
edge[++tot]=(node){head[b],a};
head[b]=tot;
} void init()
{
for (int j=;(<<j)<=n;j++)
for (int i=;i<=n;i++)
if (p[i][j-])
p[i][j]=p[p[i][j-]][j-];
} int dfs(int u)
{
for (int i=head[u];i;i=edge[i].nxt)
if (!deep[edge[i].to])
{
deep[edge[i].to]=deep[u]+;
p[edge[i].to][]=u;
dfs(edge[i].to);
}
} int LCA(int a,int b)
{
if (deep[a]<deep[b])
swap(a,b);
int i,j;
for (i=;(<<i)<=deep[a];i++);
i--;
for (j=i;j>=;j--)
if (deep[b]<=deep[a]-(<<j))
a=p[a][j];
if (a==b)
return a;
for (j=i;j>=;j--)
if (p[a][j]!=p[b][j]&&deep[p[a][j]]>=)
{
a=p[a][j];
b=p[b][j];
}
return p[a][];
} int main()
{
int i,j,k;
n=read(),m=read(),s=read();
for (i=;i<=n-;i++)
add(read(),read());
deep[s]=;
dfs(s);
init();
while (m--)
write(LCA(read(),read())),putchar();
return ;
}

LCA 算法(二)倍增的更多相关文章

  1. 【图论】tarjan的离线LCA算法

    百度百科 Definition&Solution 对于求树上\(u\)和\(v\)两点的LCA,使用在线倍增可以做到\(O(nlogn)\)的复杂度.在NOIP这种毒瘤卡常比赛中,为了代码的效 ...

  2. LCA算法

    LCA算法: LCA(Least Common Ancestor),顾名思义,是指在一棵树中,距离两个点最近的两者的公共节点.也就是说,在两个点通往根的道路上,肯定会有公共的节点,我们就是要求找到公共 ...

  3. TensorFlow 入门之手写识别(MNIST) softmax算法 二

    TensorFlow 入门之手写识别(MNIST) softmax算法 二 MNIST Fly softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算 ...

  4. 分布式共识算法 (二) Paxos算法

    系列目录 分布式共识算法 (一) 背景 分布式共识算法 (二) Paxos算法 分布式共识算法 (三) Raft算法 分布式共识算法 (四) BTF算法 一.背景 1.1 命名 Paxos,最早是Le ...

  5. 利用Tarjan算法解决(LCA)二叉搜索树的最近公共祖先问题——数据结构

    相关知识:(来自百度百科)  LCA(Least Common Ancestors) 即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先. 例如: 1和7的最近公共祖先为5: 1和5的 ...

  6. 最近公共祖先算法LCA笔记(树上倍增法)

    Update: 2019.7.15更新 万分感谢[宁信]大佬,认认真真地审核了本文章,指出了超过五处错误捂脸,太尴尬了. 万分感谢[宁信]大佬,认认真真地审核了本文章,指出了超过五处错误捂脸,太尴尬了 ...

  7. [算法]树上倍增求LCA

    LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 然后把深度更深的那一个点(4 ...

  8. LCA算法倍增算法(洛谷3379模板题)

    倍增(爬树)算法,刚刚学习的算法.对每一个点的父节点,就记录他的2k的父亲. 题目为http://www.luogu.org/problem/show?pid=3379 第一步先记录每一个节点的深度用 ...

  9. LCA算法解析-Tarjan&倍增&RMQ

    原文链接http://www.cnblogs.com/zhouzhendong/p/7256007.html UPD(2018-5-13) : 细节修改以及使用了Latex代码,公式更加美观.改的过程 ...

随机推荐

  1. ats 安全

    Controlling Access ats可以配置为仅允许某些客户端使用代理缓存. 1. 为ip_allow.config添加一行,以获取允许访问ats的每个IP地址或IP地址范围; 2. traf ...

  2. Python在函数中使用*和**接收元组和列表

    http://blog.csdn.net/delphiwcdj/article/details/5746560

  3. #Linux第四周学习总结——扒开系统调用的三层皮(上)

    Linux第四周学习总结--扒开系统调用的三层皮(上) 一.用户态.内核态和中断 系统调用通过库函数. 1.用户态和内核态 区分(不同的指令执行级别): 用户态:在相应的低执行状态下,代码的掌控范围受 ...

  4. Practice1小学四则运算(改进)

    #include<stdio.h> #include<stdlib.h> #include<time.h> void srand(unsigned);//随机生成不 ...

  5. 淘宝店铺模板开发SDK2.0下载安装图文教程

    使用TortoiseSVN Checkout TAE SDK2.0 废话少说,切入主题: 1.在http://tortoisesvn.net/downloads.html上下载TortoiseSVN ...

  6. Docker的安装和使用说明——Docker for Windows

    一.Docker安装 1.1官方方法 官方下载页面:http://www.docker.com/products/docker#/windows 官方下载地址:https://download.doc ...

  7. 【转载】Understanding When to use RabbitMQ or Apache Kafka

    https://content.pivotal.io/rabbitmq/understanding-when-to-use-rabbitmq-or-apache-kafka RabbitMQ: Erl ...

  8. linux客户端WinSCP

    WinSCP是一个Windows环境下使用SSH的开源图形化SFTP客户端.同时支持SCP协议.它的主要功能就是在本地与远程计算机间安全的复制文件.   这是一个中文版的介绍.从这里链接出去的大多数文 ...

  9. hdu6444 Neko's Loop

    要想A一道题,你需要正版ide,正版草稿纸,正版键盘,正版双手,但最重要的是正版大脑.(改编自wxf在微积分群的吐槽) 分析一下题意,选的所有数的下标模gcd(n,k)都是同余的,而且是在所有同余的下 ...

  10. docker--从仓库下载镜像到推送自己的项目到仓库步骤详解

    怎样从仓库下载的镜像,变成容器,并在容器中制作项目,再将容器变成镜像,然后将镜像推送到仓库? 一:从官网下载镜像 官方的https://hub.docker.com/提供了数十万个镜像提供大家下载 以 ...