LCA 算法(二)倍增
介绍一种解决最近公共祖先的在线算法,倍增,它是建立在任意整数的二进制拆分之上。
代码:
//LCA:Doubly #include<cstdio>
#define swap(a,b) a^=b^=a^=b
#define maxn 500010
using namespace std; int n,m,s,tot,head[maxn],deep[maxn],p[maxn][];
struct node
{
int nxt,to;
}edge[maxn<<]; int read()
{
int x=,f=;
char c=getchar();
while (c<||c>)
f=c=='-'?-:,c=getchar();
while (c>=&&c<=)
x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
} void write(int x)
{
if (x<)
x=-x,putchar('-');
if (x>=)
write(x/);
putchar(x%+);
} void add(int a,int b)
{
edge[++tot]=(node){head[a],b};
head[a]=tot;
edge[++tot]=(node){head[b],a};
head[b]=tot;
} void init()
{
for (int j=;(<<j)<=n;j++)
for (int i=;i<=n;i++)
if (p[i][j-])
p[i][j]=p[p[i][j-]][j-];
} int dfs(int u)
{
for (int i=head[u];i;i=edge[i].nxt)
if (!deep[edge[i].to])
{
deep[edge[i].to]=deep[u]+;
p[edge[i].to][]=u;
dfs(edge[i].to);
}
} int LCA(int a,int b)
{
if (deep[a]<deep[b])
swap(a,b);
int i,j;
for (i=;(<<i)<=deep[a];i++);
i--;
for (j=i;j>=;j--)
if (deep[b]<=deep[a]-(<<j))
a=p[a][j];
if (a==b)
return a;
for (j=i;j>=;j--)
if (p[a][j]!=p[b][j]&&deep[p[a][j]]>=)
{
a=p[a][j];
b=p[b][j];
}
return p[a][];
} int main()
{
int i,j,k;
n=read(),m=read(),s=read();
for (i=;i<=n-;i++)
add(read(),read());
deep[s]=;
dfs(s);
init();
while (m--)
write(LCA(read(),read())),putchar();
return ;
}
LCA 算法(二)倍增的更多相关文章
- 【图论】tarjan的离线LCA算法
百度百科 Definition&Solution 对于求树上\(u\)和\(v\)两点的LCA,使用在线倍增可以做到\(O(nlogn)\)的复杂度.在NOIP这种毒瘤卡常比赛中,为了代码的效 ...
- LCA算法
LCA算法: LCA(Least Common Ancestor),顾名思义,是指在一棵树中,距离两个点最近的两者的公共节点.也就是说,在两个点通往根的道路上,肯定会有公共的节点,我们就是要求找到公共 ...
- TensorFlow 入门之手写识别(MNIST) softmax算法 二
TensorFlow 入门之手写识别(MNIST) softmax算法 二 MNIST Fly softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算 ...
- 分布式共识算法 (二) Paxos算法
系列目录 分布式共识算法 (一) 背景 分布式共识算法 (二) Paxos算法 分布式共识算法 (三) Raft算法 分布式共识算法 (四) BTF算法 一.背景 1.1 命名 Paxos,最早是Le ...
- 利用Tarjan算法解决(LCA)二叉搜索树的最近公共祖先问题——数据结构
相关知识:(来自百度百科) LCA(Least Common Ancestors) 即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先. 例如: 1和7的最近公共祖先为5: 1和5的 ...
- 最近公共祖先算法LCA笔记(树上倍增法)
Update: 2019.7.15更新 万分感谢[宁信]大佬,认认真真地审核了本文章,指出了超过五处错误捂脸,太尴尬了. 万分感谢[宁信]大佬,认认真真地审核了本文章,指出了超过五处错误捂脸,太尴尬了 ...
- [算法]树上倍增求LCA
LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 然后把深度更深的那一个点(4 ...
- LCA算法倍增算法(洛谷3379模板题)
倍增(爬树)算法,刚刚学习的算法.对每一个点的父节点,就记录他的2k的父亲. 题目为http://www.luogu.org/problem/show?pid=3379 第一步先记录每一个节点的深度用 ...
- LCA算法解析-Tarjan&倍增&RMQ
原文链接http://www.cnblogs.com/zhouzhendong/p/7256007.html UPD(2018-5-13) : 细节修改以及使用了Latex代码,公式更加美观.改的过程 ...
随机推荐
- ats 安全
Controlling Access ats可以配置为仅允许某些客户端使用代理缓存. 1. 为ip_allow.config添加一行,以获取允许访问ats的每个IP地址或IP地址范围; 2. traf ...
- Python在函数中使用*和**接收元组和列表
http://blog.csdn.net/delphiwcdj/article/details/5746560
- #Linux第四周学习总结——扒开系统调用的三层皮(上)
Linux第四周学习总结--扒开系统调用的三层皮(上) 一.用户态.内核态和中断 系统调用通过库函数. 1.用户态和内核态 区分(不同的指令执行级别): 用户态:在相应的低执行状态下,代码的掌控范围受 ...
- Practice1小学四则运算(改进)
#include<stdio.h> #include<stdlib.h> #include<time.h> void srand(unsigned);//随机生成不 ...
- 淘宝店铺模板开发SDK2.0下载安装图文教程
使用TortoiseSVN Checkout TAE SDK2.0 废话少说,切入主题: 1.在http://tortoisesvn.net/downloads.html上下载TortoiseSVN ...
- Docker的安装和使用说明——Docker for Windows
一.Docker安装 1.1官方方法 官方下载页面:http://www.docker.com/products/docker#/windows 官方下载地址:https://download.doc ...
- 【转载】Understanding When to use RabbitMQ or Apache Kafka
https://content.pivotal.io/rabbitmq/understanding-when-to-use-rabbitmq-or-apache-kafka RabbitMQ: Erl ...
- linux客户端WinSCP
WinSCP是一个Windows环境下使用SSH的开源图形化SFTP客户端.同时支持SCP协议.它的主要功能就是在本地与远程计算机间安全的复制文件. 这是一个中文版的介绍.从这里链接出去的大多数文 ...
- hdu6444 Neko's Loop
要想A一道题,你需要正版ide,正版草稿纸,正版键盘,正版双手,但最重要的是正版大脑.(改编自wxf在微积分群的吐槽) 分析一下题意,选的所有数的下标模gcd(n,k)都是同余的,而且是在所有同余的下 ...
- docker--从仓库下载镜像到推送自己的项目到仓库步骤详解
怎样从仓库下载的镜像,变成容器,并在容器中制作项目,再将容器变成镜像,然后将镜像推送到仓库? 一:从官网下载镜像 官方的https://hub.docker.com/提供了数十万个镜像提供大家下载 以 ...