题意翻译

给出一棵 n 个结点的树,每个结点有一个颜色 c i 。 询问 q 次,每次询问以 v 结点为根的子树中,出现次数 ≥k 的颜色有多少种。树的根节点是1。

感谢@elijahqi 提供的翻译

题目描述

You have a rooted tree consisting of n n n vertices. Each vertex of the tree has some color. We will assume that the tree vertices are numbered by integers from 1 to n n n . Then we represent the color of vertex v v v as cv c_{v} cv​ . The tree root is a vertex with number 1.

In this problem you need to answer to m m m queries. Each query is described by two integers vj,kj v_{j},k_{j} vj​,kj​ . The answer to query vj,kj v_{j},k_{j} vj​,kj​ is the number of such colors of vertices x x x , that the subtree of vertex vj v_{j} vj​ contains at least kj k_{j} kj​ vertices of color x x x .

You can find the definition of a rooted tree by the following link: http://en.wikipedia.org/wiki/Tree\_(graph\_theory).

输入输出格式

输入格式:

The first line contains two integers n n n and m m m $ (2<=n<=10^{5}; 1<=m<=10^{5}) $ . The next line contains a sequence of integers c1,c2,...,cn c_{1},c_{2},...,c_{n} c1​,c2​,...,cn​ (1<=ci<=105) (1<=c_{i}<=10^{5}) (1<=ci​<=105) . The next n−1 n-1 n−1 lines contain the edges of the tree. The i i i -th line contains the numbers ai,bi a_{i},b_{i} ai​,bi​ $ (1<=a_{i},b_{i}<=n; a_{i}≠b_{i}) $ — the vertices connected by an edge of the tree.

Next m m m lines contain the queries. The j j j -th line contains two integers vj,kj v_{j},k_{j} vj​,kj​ $ (1<=v_{j}<=n; 1<=k_{j}<=10^{5}) $ .

输出格式:

Print m m m integers — the answers to the queries in the order the queries appear in the input.

输入输出样例

输入样例#1:

8 5
1 2 2 3 3 2 3 3
1 2
1 5
2 3
2 4
5 6
5 7
5 8
1 2
1 3
1 4
2 3
5 3
输出样例#1:

2
2
1
0
1
输入样例#2:

4 1
1 2 3 4
1 2
2 3
3 4
1 1
输出样例#2:

4

说明

A subtree of vertex v v v in a rooted tree with root r r r is a set of vertices $ {u :dist(r,v)+dist(v,u)=dist(r,u)} $ . Where dist(x,y) dist(x,y) dist(x,y) is the length (in edges) of the shortest path between vertices x x x and y y y .

Solution:

  本题树上莫队。

  求子树颜色个数,可以直接弄出dfs序,统计每个子树的入栈时间$inc$和$ouc$,然后对于询问变为dfs序上的区间颜色数查询,直接莫队就好了。

代码:

/*Code by 520 -- 10.19*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int n,m,to[N],net[N],h[N],cnt,a[N],bl[N],c[N];
int rc,dfn[N],inc[N],ouc[N],sum[N],ans[N];
struct node{
int l,r,k,id;
bool operator < (const node &a) const {return bl[l]==bl[a.l]?r<a.r:l<a.l;}
}t[N]; int gi(){
int a=;char x=getchar();
while(x<''||x>'') x=getchar();
while(x>=''&&x<='') a=(a<<)+(a<<)+(x^),x=getchar();
return a;
} il void Add(int u,int v){to[++cnt]=v,net[cnt]=h[u],h[u]=cnt;} void dfs(int u,int lst){
dfn[++rc]=u,inc[u]=rc;
for(RE int i=h[u];i;i=net[i])
if(to[i]!=lst) dfs(to[i],u);
ouc[u]=rc;
} il void add(int x){sum[++c[a[x]]]++;} il void del(int x){sum[c[a[x]]--]--;} int main(){
n=gi(),m=gi(); int blo=sqrt(n),u,v;
For(i,,n) a[i]=gi(),bl[i]=(i-)/blo+;
For(i,,n) u=gi(),v=gi(),Add(u,v),Add(v,u);
dfs(,);
For(i,,m) u=gi(),v=gi(),t[i]=node{inc[u],ouc[u],v,i};
sort(t+,t+m+);
for(RE int i=,l=,r=;i<=m;i++){
while(l<t[i].l) del(dfn[l]),l++;
while(l>t[i].l) --l,add(dfn[l]);
while(r<t[i].r) ++r,add(dfn[r]);
while(r>t[i].r) del(dfn[r]),r--;
ans[t[i].id]=sum[t[i].k];
}
For(i,,m) printf("%d\n",ans[i]);
return ;
}
 
 
 
 
 
 

CF375D Tree and Queries的更多相关文章

  1. CF375D Tree and Queries(dsu on tree)

    思路 dsu on tree的板子,可惜人傻把 for(int i=fir[u];i;i=nxt[i]) 打成 for(int i=fir[u];i<=n;i++) 调了两个小时 这题要求维护& ...

  2. 「CF375D Tree and Queries」

    题目 \(dsu\ on\ tree\)的板子题了 \(dsu\ on\ tree\)本质上一种优秀通过轻重链剖分优化到\(O(nlogn)\)的暴力 一般用来解决没有修改的允许离线的子树查询问题 首 ...

  3. CF375D Tree and Queries 题解

    感觉CF的题目名都好朴素的样子 你谷链接 首先这题显然是个dsu on tree 但是我不会. 其次这题显然是个莫队.这我会啊! 然后会发现好像不是很对劲.因为每次询问都有一个k,貌似和传统的莫队数颜 ...

  4. 【题解】 Luogu CF375D Tree and Queries

    原题传送门 这道题要用树链剖分,我博客里有对树链剖分的详细介绍 我博客中对莫队的详细介绍 莫队好题 我一上来想写线段树,随后觉得不好写并弃坑 我们可以看见没有修改操作,钦定莫队 但这是在树上,所以不能 ...

  5. cf375D. Tree and Queries(莫队)

    题意 题目链接 给出一棵 n 个结点的树,每个结点有一个颜色 c i . 询问 q 次,每次询问以 v 结点为根的子树中,出现次数 ≥k 的颜色有多少种.树的根节点是1. Sol 想到了主席树和启发式 ...

  6. 【题解】CF375D Tree and Queries

    Link \(\text{Solution:}\) 讲实话这题有点烦,不知道为啥改了下\(\text{dfs}\)就过了--原版本\(dfs\)好像没啥错啊-- 其实对于子树问题,我们求出原来树的\( ...

  7. [Codeforces Round #221 (Div. 1)][D. Tree and Queries]

    题目链接:375D - Tree and Queries 题目大意:给你一个有n个点的树,每个点都有其对应的颜色,给出m次询问(v,k),问v的子树中有多少种颜色至少出现k次 题解:先对所有的询问进行 ...

  8. Codeforces 375D Tree and Queries(DFS序+莫队+树状数组)

    题目链接  Tree and Queries 题目大意  给出一棵树和每个节点的颜色.每次询问$vj, kj$ 你需要回答在以$vj$为根的子树中满足条件的的颜色数目, 条件:具有该颜色的节点数量至少 ...

  9. CodeForces 375D Tree and Queries 莫队||DFS序

    Tree and Queries 题意:有一颗以1号节点为根的树,每一个节点有一个自己的颜色,求出节点v的子数上颜色出现次数>=k的颜色种类. 题解:使用莫队处理这个问题,将树转变成DFS序区间 ...

随机推荐

  1. P2331 [SCOI2005]最大子矩阵

    题目描述 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 输入输出格式 输入格式: 第一行为n,m,k(1≤n≤100,1≤m≤2 ...

  2. 基于树莓派3的CAN总线编程

    基于树莓派3的CAN总线编程 原创 2016年09月08日 10:16:13 标签: 树莓派3 / MCP2515 / CAN总线 / python / 命令行 5254 简介 树莓派3使用Pytho ...

  3. 2017-2018 Exp8 Web基础 20155214

    目录 Exp8 Web基础 实验内容 建站过程 SQL注入 知识点 Exp8 Web基础 实验内容 实验环境 主机 Kali 靶机 Kali 实验工具 后台语言 'PHP' 服务器 'Apache' ...

  4. Linux下Maven+SVN自动打包脚本

        公司的开发环境每次部署项目都很麻烦,需要手动打包并上传上去.这个太麻烦了,所以就准备搞个自动打包的脚本.脚本自动从svn代码库里面更新最新的代码下来,然后maven打包,最后把war包丢到to ...

  5. 配置yum,nc,telnet

    一.学习中问题 最近学习在学习Hadoop的一个子项目Zookeeper,在测试其中的“四字命令”---”echo ruok|nc localhost 2181“时发现命令无法被识别,如下图所示: [ ...

  6. PHP调用WCF提供的方法

    一.准备工作 1.安装wampserver:过程略 2.配置wampserver: 2.1打开php.ini文件,去掉 ;extension=php_soap.dll 这里那个分号. 也有说把这个 ; ...

  7. Flutter - ListView禁止用户上下滑动

    ListView禁止用户上下滑动可以使用physics属性 physics: const NeverScrollableScrollPhysics()

  8. 在git与tortoisegit中使用openSSH与PuTTY

    问题 在使用Git与tortoisegit的时候,指定远程版本库的地址有2种方式: 使用https方式的git地址非常直接(https://xxx.oschina.net/xxx.git),基本上什么 ...

  9. Java关键字 Finally执行与break, continue, return等关键字的关系

    长文短总结: 在程序没有在执行到finally之前异常退出的情况下,finally是一定执行的,即在finally之前的return语句将在finally执行之后执行. finally总是在控制转移语 ...

  10. Python提示信息表示内容

      =此页面列出了PyLint 1.1.0支持的所有消息,按消息文本排序.还有一个按消息代码排序的所有代码列表. E0001,F0001,W0511(消息不同) E0103:循环中%r不正确W1501 ...