题意翻译

给出一棵 n 个结点的树,每个结点有一个颜色 c i 。 询问 q 次,每次询问以 v 结点为根的子树中,出现次数 ≥k 的颜色有多少种。树的根节点是1。

感谢@elijahqi 提供的翻译

题目描述

You have a rooted tree consisting of n n n vertices. Each vertex of the tree has some color. We will assume that the tree vertices are numbered by integers from 1 to n n n . Then we represent the color of vertex v v v as cv c_{v} cv​ . The tree root is a vertex with number 1.

In this problem you need to answer to m m m queries. Each query is described by two integers vj,kj v_{j},k_{j} vj​,kj​ . The answer to query vj,kj v_{j},k_{j} vj​,kj​ is the number of such colors of vertices x x x , that the subtree of vertex vj v_{j} vj​ contains at least kj k_{j} kj​ vertices of color x x x .

You can find the definition of a rooted tree by the following link: http://en.wikipedia.org/wiki/Tree\_(graph\_theory).

输入输出格式

输入格式:

The first line contains two integers n n n and m m m $ (2<=n<=10^{5}; 1<=m<=10^{5}) $ . The next line contains a sequence of integers c1,c2,...,cn c_{1},c_{2},...,c_{n} c1​,c2​,...,cn​ (1<=ci<=105) (1<=c_{i}<=10^{5}) (1<=ci​<=105) . The next n−1 n-1 n−1 lines contain the edges of the tree. The i i i -th line contains the numbers ai,bi a_{i},b_{i} ai​,bi​ $ (1<=a_{i},b_{i}<=n; a_{i}≠b_{i}) $ — the vertices connected by an edge of the tree.

Next m m m lines contain the queries. The j j j -th line contains two integers vj,kj v_{j},k_{j} vj​,kj​ $ (1<=v_{j}<=n; 1<=k_{j}<=10^{5}) $ .

输出格式:

Print m m m integers — the answers to the queries in the order the queries appear in the input.

输入输出样例

输入样例#1:

8 5
1 2 2 3 3 2 3 3
1 2
1 5
2 3
2 4
5 6
5 7
5 8
1 2
1 3
1 4
2 3
5 3
输出样例#1:

2
2
1
0
1
输入样例#2:

4 1
1 2 3 4
1 2
2 3
3 4
1 1
输出样例#2:

4

说明

A subtree of vertex v v v in a rooted tree with root r r r is a set of vertices $ {u :dist(r,v)+dist(v,u)=dist(r,u)} $ . Where dist(x,y) dist(x,y) dist(x,y) is the length (in edges) of the shortest path between vertices x x x and y y y .

Solution:

  本题树上莫队。

  求子树颜色个数,可以直接弄出dfs序,统计每个子树的入栈时间$inc$和$ouc$,然后对于询问变为dfs序上的区间颜色数查询,直接莫队就好了。

代码:

/*Code by 520 -- 10.19*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int n,m,to[N],net[N],h[N],cnt,a[N],bl[N],c[N];
int rc,dfn[N],inc[N],ouc[N],sum[N],ans[N];
struct node{
int l,r,k,id;
bool operator < (const node &a) const {return bl[l]==bl[a.l]?r<a.r:l<a.l;}
}t[N]; int gi(){
int a=;char x=getchar();
while(x<''||x>'') x=getchar();
while(x>=''&&x<='') a=(a<<)+(a<<)+(x^),x=getchar();
return a;
} il void Add(int u,int v){to[++cnt]=v,net[cnt]=h[u],h[u]=cnt;} void dfs(int u,int lst){
dfn[++rc]=u,inc[u]=rc;
for(RE int i=h[u];i;i=net[i])
if(to[i]!=lst) dfs(to[i],u);
ouc[u]=rc;
} il void add(int x){sum[++c[a[x]]]++;} il void del(int x){sum[c[a[x]]--]--;} int main(){
n=gi(),m=gi(); int blo=sqrt(n),u,v;
For(i,,n) a[i]=gi(),bl[i]=(i-)/blo+;
For(i,,n) u=gi(),v=gi(),Add(u,v),Add(v,u);
dfs(,);
For(i,,m) u=gi(),v=gi(),t[i]=node{inc[u],ouc[u],v,i};
sort(t+,t+m+);
for(RE int i=,l=,r=;i<=m;i++){
while(l<t[i].l) del(dfn[l]),l++;
while(l>t[i].l) --l,add(dfn[l]);
while(r<t[i].r) ++r,add(dfn[r]);
while(r>t[i].r) del(dfn[r]),r--;
ans[t[i].id]=sum[t[i].k];
}
For(i,,m) printf("%d\n",ans[i]);
return ;
}
 
 
 
 
 
 

CF375D Tree and Queries的更多相关文章

  1. CF375D Tree and Queries(dsu on tree)

    思路 dsu on tree的板子,可惜人傻把 for(int i=fir[u];i;i=nxt[i]) 打成 for(int i=fir[u];i<=n;i++) 调了两个小时 这题要求维护& ...

  2. 「CF375D Tree and Queries」

    题目 \(dsu\ on\ tree\)的板子题了 \(dsu\ on\ tree\)本质上一种优秀通过轻重链剖分优化到\(O(nlogn)\)的暴力 一般用来解决没有修改的允许离线的子树查询问题 首 ...

  3. CF375D Tree and Queries 题解

    感觉CF的题目名都好朴素的样子 你谷链接 首先这题显然是个dsu on tree 但是我不会. 其次这题显然是个莫队.这我会啊! 然后会发现好像不是很对劲.因为每次询问都有一个k,貌似和传统的莫队数颜 ...

  4. 【题解】 Luogu CF375D Tree and Queries

    原题传送门 这道题要用树链剖分,我博客里有对树链剖分的详细介绍 我博客中对莫队的详细介绍 莫队好题 我一上来想写线段树,随后觉得不好写并弃坑 我们可以看见没有修改操作,钦定莫队 但这是在树上,所以不能 ...

  5. cf375D. Tree and Queries(莫队)

    题意 题目链接 给出一棵 n 个结点的树,每个结点有一个颜色 c i . 询问 q 次,每次询问以 v 结点为根的子树中,出现次数 ≥k 的颜色有多少种.树的根节点是1. Sol 想到了主席树和启发式 ...

  6. 【题解】CF375D Tree and Queries

    Link \(\text{Solution:}\) 讲实话这题有点烦,不知道为啥改了下\(\text{dfs}\)就过了--原版本\(dfs\)好像没啥错啊-- 其实对于子树问题,我们求出原来树的\( ...

  7. [Codeforces Round #221 (Div. 1)][D. Tree and Queries]

    题目链接:375D - Tree and Queries 题目大意:给你一个有n个点的树,每个点都有其对应的颜色,给出m次询问(v,k),问v的子树中有多少种颜色至少出现k次 题解:先对所有的询问进行 ...

  8. Codeforces 375D Tree and Queries(DFS序+莫队+树状数组)

    题目链接  Tree and Queries 题目大意  给出一棵树和每个节点的颜色.每次询问$vj, kj$ 你需要回答在以$vj$为根的子树中满足条件的的颜色数目, 条件:具有该颜色的节点数量至少 ...

  9. CodeForces 375D Tree and Queries 莫队||DFS序

    Tree and Queries 题意:有一颗以1号节点为根的树,每一个节点有一个自己的颜色,求出节点v的子数上颜色出现次数>=k的颜色种类. 题解:使用莫队处理这个问题,将树转变成DFS序区间 ...

随机推荐

  1. kubernetes 资源请求和限制

    1. spec:      containers:        - name: example          resources:            requests:            ...

  2. Oracle substr() instr() 用法

    转载:oracle中substr() instr() 用法 substr(字符串,截取开始位置,截取长度) = 返回截取的字符串instr(源字符串,目标字符串,起始字符串,匹配字符串) = 返回要截 ...

  3. vmware共享文件夹

    环境: VMware Workstation 11.0 虚拟机中的系统:Ubuntu 16.04 物理机:window 7 安装好vmware tools后在 /mnt/hgfs 里没有东西,是空白的 ...

  4. php删除文件夹和其下的内容

    原文地址:http://www.cnblogs.com/xiaochaohuashengmi/archive/2011/05/13/2045158.html <?php function del ...

  5. CAN总线典型特征

    CAN总线典型特征 2016-04-12 20:36:54来源: eefocus 关键字:CAN总线  典型特征   收藏 评论(0) 分享到 微博 QQ 微信 LinkedIn CAN总线有如下基本 ...

  6. Scala--特质

    一.为什么没有多重继承 c++允许多重继承 Java不允许多重继承,类只能继承一个超类,可以实现任意数量的接口. 如何继承这两个抽象基类? Scala提供“特质”而非接口:特质可以同时抽象方法和具体方 ...

  7. 【LeetCode206】Reverse Linked List★

    题目描述: 解题思路: 关于单链表的反转有迭代和递归两种方法,方法不在多,本文主要介绍迭代的方法. 迭代的方法,要使用三个指针,需要注意一点的是指针的初始化,对第一个指针初始化为pre=null,第二 ...

  8. Python实现随机读取文本N行数据

    工作中需要判断某个文本中的URL是否能正常访问,并且随机获取其中N行能正常访问的URL数据,我的思路是:读取文本每一行数据,用urlopen访问,将返回状态码为200的URL保存到一个列表,获得列表长 ...

  9. shellcode 初次使用笔记

    winXP SP3 环境 (xp环境默认没开启栈不可执行机制,比较方便破解,如果已开启了,请自行百度如何关闭) dig.exe 目标文件 x86dbg调试工具 python 环境 打开准备好的目标软件 ...

  10. 按键精灵对APP自动化测试(下)

    上一篇介绍了安卓app上使用按键精灵的实践,这里再来说说苹果上的app. 由于iOS相关工具对操作系统的限制,目前在iOS10.0.2系统上应用成功. 二.       苹果手机按键精灵APP录制 适 ...