题意翻译

给出一棵 n 个结点的树,每个结点有一个颜色 c i 。 询问 q 次,每次询问以 v 结点为根的子树中,出现次数 ≥k 的颜色有多少种。树的根节点是1。

感谢@elijahqi 提供的翻译

题目描述

You have a rooted tree consisting of n n n vertices. Each vertex of the tree has some color. We will assume that the tree vertices are numbered by integers from 1 to n n n . Then we represent the color of vertex v v v as cv c_{v} cv​ . The tree root is a vertex with number 1.

In this problem you need to answer to m m m queries. Each query is described by two integers vj,kj v_{j},k_{j} vj​,kj​ . The answer to query vj,kj v_{j},k_{j} vj​,kj​ is the number of such colors of vertices x x x , that the subtree of vertex vj v_{j} vj​ contains at least kj k_{j} kj​ vertices of color x x x .

You can find the definition of a rooted tree by the following link: http://en.wikipedia.org/wiki/Tree\_(graph\_theory).

输入输出格式

输入格式:

The first line contains two integers n n n and m m m $ (2<=n<=10^{5}; 1<=m<=10^{5}) $ . The next line contains a sequence of integers c1,c2,...,cn c_{1},c_{2},...,c_{n} c1​,c2​,...,cn​ (1<=ci<=105) (1<=c_{i}<=10^{5}) (1<=ci​<=105) . The next n−1 n-1 n−1 lines contain the edges of the tree. The i i i -th line contains the numbers ai,bi a_{i},b_{i} ai​,bi​ $ (1<=a_{i},b_{i}<=n; a_{i}≠b_{i}) $ — the vertices connected by an edge of the tree.

Next m m m lines contain the queries. The j j j -th line contains two integers vj,kj v_{j},k_{j} vj​,kj​ $ (1<=v_{j}<=n; 1<=k_{j}<=10^{5}) $ .

输出格式:

Print m m m integers — the answers to the queries in the order the queries appear in the input.

输入输出样例

输入样例#1:

8 5
1 2 2 3 3 2 3 3
1 2
1 5
2 3
2 4
5 6
5 7
5 8
1 2
1 3
1 4
2 3
5 3
输出样例#1:

2
2
1
0
1
输入样例#2:

4 1
1 2 3 4
1 2
2 3
3 4
1 1
输出样例#2:

4

说明

A subtree of vertex v v v in a rooted tree with root r r r is a set of vertices $ {u :dist(r,v)+dist(v,u)=dist(r,u)} $ . Where dist(x,y) dist(x,y) dist(x,y) is the length (in edges) of the shortest path between vertices x x x and y y y .

Solution:

  本题树上莫队。

  求子树颜色个数,可以直接弄出dfs序,统计每个子树的入栈时间$inc$和$ouc$,然后对于询问变为dfs序上的区间颜色数查询,直接莫队就好了。

代码:

/*Code by 520 -- 10.19*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int n,m,to[N],net[N],h[N],cnt,a[N],bl[N],c[N];
int rc,dfn[N],inc[N],ouc[N],sum[N],ans[N];
struct node{
int l,r,k,id;
bool operator < (const node &a) const {return bl[l]==bl[a.l]?r<a.r:l<a.l;}
}t[N]; int gi(){
int a=;char x=getchar();
while(x<''||x>'') x=getchar();
while(x>=''&&x<='') a=(a<<)+(a<<)+(x^),x=getchar();
return a;
} il void Add(int u,int v){to[++cnt]=v,net[cnt]=h[u],h[u]=cnt;} void dfs(int u,int lst){
dfn[++rc]=u,inc[u]=rc;
for(RE int i=h[u];i;i=net[i])
if(to[i]!=lst) dfs(to[i],u);
ouc[u]=rc;
} il void add(int x){sum[++c[a[x]]]++;} il void del(int x){sum[c[a[x]]--]--;} int main(){
n=gi(),m=gi(); int blo=sqrt(n),u,v;
For(i,,n) a[i]=gi(),bl[i]=(i-)/blo+;
For(i,,n) u=gi(),v=gi(),Add(u,v),Add(v,u);
dfs(,);
For(i,,m) u=gi(),v=gi(),t[i]=node{inc[u],ouc[u],v,i};
sort(t+,t+m+);
for(RE int i=,l=,r=;i<=m;i++){
while(l<t[i].l) del(dfn[l]),l++;
while(l>t[i].l) --l,add(dfn[l]);
while(r<t[i].r) ++r,add(dfn[r]);
while(r>t[i].r) del(dfn[r]),r--;
ans[t[i].id]=sum[t[i].k];
}
For(i,,m) printf("%d\n",ans[i]);
return ;
}
 
 
 
 
 
 

CF375D Tree and Queries的更多相关文章

  1. CF375D Tree and Queries(dsu on tree)

    思路 dsu on tree的板子,可惜人傻把 for(int i=fir[u];i;i=nxt[i]) 打成 for(int i=fir[u];i<=n;i++) 调了两个小时 这题要求维护& ...

  2. 「CF375D Tree and Queries」

    题目 \(dsu\ on\ tree\)的板子题了 \(dsu\ on\ tree\)本质上一种优秀通过轻重链剖分优化到\(O(nlogn)\)的暴力 一般用来解决没有修改的允许离线的子树查询问题 首 ...

  3. CF375D Tree and Queries 题解

    感觉CF的题目名都好朴素的样子 你谷链接 首先这题显然是个dsu on tree 但是我不会. 其次这题显然是个莫队.这我会啊! 然后会发现好像不是很对劲.因为每次询问都有一个k,貌似和传统的莫队数颜 ...

  4. 【题解】 Luogu CF375D Tree and Queries

    原题传送门 这道题要用树链剖分,我博客里有对树链剖分的详细介绍 我博客中对莫队的详细介绍 莫队好题 我一上来想写线段树,随后觉得不好写并弃坑 我们可以看见没有修改操作,钦定莫队 但这是在树上,所以不能 ...

  5. cf375D. Tree and Queries(莫队)

    题意 题目链接 给出一棵 n 个结点的树,每个结点有一个颜色 c i . 询问 q 次,每次询问以 v 结点为根的子树中,出现次数 ≥k 的颜色有多少种.树的根节点是1. Sol 想到了主席树和启发式 ...

  6. 【题解】CF375D Tree and Queries

    Link \(\text{Solution:}\) 讲实话这题有点烦,不知道为啥改了下\(\text{dfs}\)就过了--原版本\(dfs\)好像没啥错啊-- 其实对于子树问题,我们求出原来树的\( ...

  7. [Codeforces Round #221 (Div. 1)][D. Tree and Queries]

    题目链接:375D - Tree and Queries 题目大意:给你一个有n个点的树,每个点都有其对应的颜色,给出m次询问(v,k),问v的子树中有多少种颜色至少出现k次 题解:先对所有的询问进行 ...

  8. Codeforces 375D Tree and Queries(DFS序+莫队+树状数组)

    题目链接  Tree and Queries 题目大意  给出一棵树和每个节点的颜色.每次询问$vj, kj$ 你需要回答在以$vj$为根的子树中满足条件的的颜色数目, 条件:具有该颜色的节点数量至少 ...

  9. CodeForces 375D Tree and Queries 莫队||DFS序

    Tree and Queries 题意:有一颗以1号节点为根的树,每一个节点有一个自己的颜色,求出节点v的子数上颜色出现次数>=k的颜色种类. 题解:使用莫队处理这个问题,将树转变成DFS序区间 ...

随机推荐

  1. 用ESP8266+android,制作自己的WIFI小车(ESP8266篇)

    整体思路ESP8266作为TCP服务器,,手机作为TCP客户端,自己使用Lua直接做到了芯片里面,省了单片机,,节约成本,其实本来就是个单片机(感觉Lua开发8266真的很好,甩AT指令好几条街,,而 ...

  2. Delphi 10.3 Rio + iOS 12.1 SDK 编译错误 "libcharset.1.dylib"

    环境版本: Delphi 10.3 Rio iOS 12.1 SDK Xcode 10.1 (10B61) 错误讯息:[DCC Error] E2597 ld: file not found: /us ...

  3. 20155209 Exp5 MSF基础应用

    Exp5 MSF基础应用 实验准备 在实验之前,上网搜集了很多有关Metasploit渗透测试的资料.对这次实验影响最大的是一篇最受欢迎的10个Metasploit模块和插件.排名第一位的是MSB-M ...

  4. 20155232《网络对抗》Exp2 后门原理与实践

    20155232<网络对抗>Exp2 后门原理与实践 问题回答 1.例举你能想到的一个后门进入到你系统中的可能方式? 通过网页上弹出来的软件自动安装 2.例举你知道的后门如何启动起来(wi ...

  5. 课程设计个人报告——基于ARM实验箱的Android交友软件的设计与实现

    个人贡献 熟悉试验箱各元件功能以及连接组装试验箱 一.实验内容 研究实验箱串口.USB线的调通连接 二.实践步骤 1.打开实验箱,首先了解各元件功能 这个是LTE模块,也叫4G模块,具体的作用是硬件将 ...

  6. Android开发——Android多进程以及使用场景介绍

    个层级,具体可以查看Android开发--Android进程保活招式大全中1.1部分的内容,这里就不赘述了. 根据进程中当前活动组件的重要程度,Android 会将进程评定为它可能达到的最高级别.例如 ...

  7. Ubuntu+Qt+OpenCV+FFMPEG环境搭建

    基于ubuntu16.04下opencv3.2安装配置 Ubuntu16.04下安装FFmpeg(超简单版) Qt编译后提示: /usr/bin/ld: 找不到 -lGL 安装libGL: sudo ...

  8. libgdx学习记录5——演员Actor

    Actor也是libgdx中非常重要的一个元素,一般与stage配合一起使用.Actor能够设置大小,位置,旋转和动画等. 我们自定义的Actor一般需要继承于Actor,并且重写其中的act和dra ...

  9. 页面弹出全屏浮层或遮罩时,禁止底层body滚动

    · 解决方法 针对弹出的浮层的 touchmove事件,添加阻止浏览器默认行为. $('.mask-wrapper').on('touchmove', function (event) { // 监听 ...

  10. Android Studio Xposed模块编写(一)

    1.环境说明 本文主要参考https://my.oschina.net/wisedream/blog/471292?fromerr=rNPFQidG的内容,自己实现了一遍,侵权请告知 已经安装xpos ...