hadoop安装与WordCount例子
1、JDK安装
下载网址:
http://www.oracle.com/technetwork/java/javase/downloads/jdk-6u29-download-513648.html
如果本地有安装包,则用SecureCRT连接Linux机器,然后用rz指令进行上传文件;
下载后获得jdk-6u29-linux-i586-rpm.bin文件,使用sh jdk-6u29-linux-i586-rpm.bin进行安装,
等待安装完成即可;java默认会安装在/usr/java下;
在命令行输入:vi /etc/profile在里面添加如下内容export JAVA_HOME=/usr/java/jdk1.6.0_29export JAVA_BIN=/usr/java/jdk1.6.0_29/binexport PATH=$PATH:$JAVA_HOME/binexport CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jarexport JAVA_HOME JAVA_BIN PATH CLASSPATH
进入 /usr/bin/目录cd /usr/binln -s -f /usr/java/jdk1.6.0_29/jre/bin/javaln -s -f /usr/java/jdk1.6.0_29/bin/javac
在命令行输入java -version屏幕输出:java version "jdk1.6.0_02"Java(TM) 2 Runtime Environment, Standard Edition (build jdk1.6.0_02)Java HotSpot(TM) Client VM (build jdk1.6.0_02, mixed mode)则表示安装JDK1.6完毕.
2、Hadoop安装
下载网址:http://www.apache.org/dyn/closer.cgi/hadoop/common/
如果本地有安装包,则用SecureCRT连接Linux机器,然后用rz指令进行上传文件;
下载后获得hadoop-0.21.0.tar.gz文件
解压 tar zxvf hadoop-0.21.0.tar.gz
压缩:tar zcvf hadoop-0.21.0.tar.gz 目录名
在命令行输入:vi /etc/profile在里面添加如下内容
export hadoop_home = /usr/george/dev/install/hadoop-0.21.0
export JAVA_HOME=/usr/java/jdk1.6.0_29export JAVA_BIN=/usr/java/jdk1.6.0_29/binexport PATH=$PATH:$JAVA_HOME/bin:$hadoop_home/binexport CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jarexport JAVA_HOME JAVA_BIN PATH CLASSPATH
需要注销用户或重启vm,就可以直接输入hadoop指令了;
WordCount例子代码
3.1 Java代码:
package demo;
import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
public class WordCount {
public static class Map extends MapReduceBase implements
Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
output.collect(word, one);
}
}
}
public static class Reduce extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf);
}
}
3.2 编译:
javac -classpath /usr/george/dev/install/hadoop-0.21.0/hadoop-hdfs-0.21.0.jar:/usr/george/dev/install/hadoop-0.21.0/hadoop-mapred-0.21.0.jar:/usr/george/dev/install/hadoop-0.21.0/hadoop-common-0.21.0.jar WordCount.java -d /usr/george/dev/wkspace/hadoop/wordcount/classes
在windows中,多个classpath参数值用;分割;在linux中用:分割;
编译后,会在/usr/george/dev/wkspace/hadoop/wordcount/classes目录下生成三个class文件:
WordCount.class WordCount$Map.class WordCount$Reduce.class
3.3将class文件打成jar包
到/usr/george/dev/wkspace/hadoop/wordcount/classes目录,运行jar cvf WordCount.jar *.class就会生成:
WordCount.class WordCount.jar WordCount$Map.class WordCount$Reduce.class
3.4 创建输入数据:
创建/usr/george/dev/wkspace/hadoop/wordcount/datas目录,在其下创建input1.txt和input2.txt文件:
Touch input1.txt
Vi input1.txt
文件内容如下:
i love chinaare you ok?
按照同样的方法创建input2.txt,内容如下:
hello, i love word
You are ok
创建成功后可以通过cat input1.txt 和 cat input2.txt查看内容;
3.5 创建hadoop输入与输出目录:
hadoop fs -mkdir wordcount/inputhadoop fs -mkdir wordcount/outputhadoop fs -put input1.txt wordcount/input/hadoop fs -put input2.txt wordcount/input/
Ps : 可以不创建out目录,要不运行WordCount程序时会报output文件已经存在,所以下面的命令行中使用了output1为输出目录;
3.6运行
到/usr/george/dev/wkspace/hadoop/wordcount/classes目录,运行
[root@localhost classes]# hadoop jar WordCount.jar WordCount wordcount/input wordcount/output1
11/12/02 05:53:59 INFO security.Groups: Group mapping impl=org.apache.hadoop.security.ShellBasedUnixGroupsMapping; cacheTimeout=300000
11/12/02 05:53:59 WARN conf.Configuration: mapred.task.id is deprecated. Instead, use mapreduce.task.attempt.id
11/12/02 05:53:59 WARN mapreduce.JobSubmitter: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
11/12/02 05:53:59 INFO mapred.FileInputFormat: Total input paths to process : 2
11/12/02 05:54:00 WARN conf.Configuration: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
11/12/02 05:54:00 INFO mapreduce.JobSubmitter: number of splits:2
11/12/02 05:54:00 INFO mapreduce.JobSubmitter: adding the following namenodes' delegation tokens:null
11/12/02 05:54:00 INFO mapreduce.Job: Running job: job_201112020429_0003
11/12/02 05:54:01 INFO mapreduce.Job: map 0% reduce 0%
11/12/02 05:54:20 INFO mapreduce.Job: map 50% reduce 0%
11/12/02 05:54:23 INFO mapreduce.Job: map 100% reduce 0%
11/12/02 05:54:29 INFO mapreduce.Job: map 100% reduce 100%
11/12/02 05:54:32 INFO mapreduce.Job: Job complete: job_201112020429_0003
11/12/02 05:54:32 INFO mapreduce.Job: Counters: 33
FileInputFormatCounters
BYTES_READ=54
FileSystemCounters
FILE_BYTES_READ=132
FILE_BYTES_WRITTEN=334
HDFS_BYTES_READ=274
HDFS_BYTES_WRITTEN=65
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
Job Counters
Data-local map tasks=2
Total time spent by all maps waiting after reserving slots (ms)=0
Total time spent by all reduces waiting after reserving slots (ms)=0
SLOTS_MILLIS_MAPS=24824
SLOTS_MILLIS_REDUCES=6870
Launched map tasks=2
Launched reduce tasks=1
Map-Reduce Framework
Combine input records=12
Combine output records=12
Failed Shuffles=0
GC time elapsed (ms)=291
Map input records=4
Map output bytes=102
Map output records=12
Merged Map outputs=2
Reduce input groups=10
Reduce input records=12
Reduce output records=10
Reduce shuffle bytes=138
Shuffled Maps =2
Spilled Records=24
SPLIT_RAW_BYTES=220
3.7 查看输出目录
[root@localhost classes]# hadoop fs -ls wordcount/output1
11/12/02 05:54:59 INFO security.Groups: Group mapping impl=org.apache.hadoop.security.ShellBasedUnixGroupsMapping; cacheTimeout=300000
11/12/02 05:55:00 WARN conf.Configuration: mapred.task.id is deprecated. Instead, use mapreduce.task.attempt.id
Found 2 items
-rw-r--r-- 1 root supergroup 0 2011-12-02 05:54 /user/root/wordcount/output1/_SUCCESS
-rw-r--r-- 1 root supergroup 65 2011-12-02 05:54 /user/root/wordcount/output1/part-00000
[root@localhost classes]# hadoop fs -cat /user/root/wordcount/output1/part-00000
11/12/02 05:56:05 INFO security.Groups: Group mapping impl=org.apache.hadoop.security.ShellBasedUnixGroupsMapping; cacheTimeout=300000
11/12/02 05:56:05 WARN conf.Configuration: mapred.task.id is deprecated. Instead, use mapreduce.task.attempt.id
You 1
are 2
china 1
hello,i 1
i 1
love 2
ok 1
ok? 1
word 1
you 1
hadoop安装与WordCount例子的更多相关文章
- 三.hadoop mapreduce之WordCount例子
目录: 目录见文章1 这个案列完成对单词的计数,重写map,与reduce方法,完成对mapreduce的理解. Mapreduce初析 Mapreduce是一个计算框架,既然是做计算的框架,那么表现 ...
- RedHat 安装Hadoop并运行wordcount例子
1.安装 Red Hat 环境 2.安装JDK 3.下载hadoop2.8.0 http://mirrors.tuna.tsinghua.edu.cn/apache/hadoop/common/had ...
- [Linux][Hadoop] 运行WordCount例子
紧接上篇,完成Hadoop的安装并跑起来之后,是该运行相关例子的时候了,而最简单最直接的例子就是HelloWorld式的WordCount例子. 参照博客进行运行:http://xiejiangl ...
- hadoop的wordcount例子运行
可以通过一个简单的例子来说明MapReduce到底是什么: 我们要统计一个大文件中的各个单词出现的次数.由于文件太大.我们把这个文件切分成如果小文件,然后安排多个人去统计.这个过程就是”Map”.然后 ...
- Hadoop【单机安装-测试程序WordCount】
Hadoop程序说明,就是创建一个文本文件,然后统计这个文本文件中单词出现过多少次! (MapReduce 运行在本地 启动JVM ) 第一步 创建需要的文件目录,然后进入该文件中进行编辑 ...
- (二)Hadoop例子——运行example中的wordCount例子
Hadoop例子——运行example中的wordCount例子 一. 需求说明 单词计数是最简单也是最能体现MapReduce思想的程序之一,可以称为 MapReduce版"Hello ...
- 【hadoop】看懂WordCount例子
前言:今天刚开始看到map和reduce类里面的内容时,说实话一片迷茫,who are you?,最后实在没办法,上B站看别人的解说视频,再加上自己去网上查java的包的解释,终于把WordCount ...
- 转载:Hadoop安装教程_单机/伪分布式配置_Hadoop2.6.0/Ubuntu14.04
原文 http://www.powerxing.com/install-hadoop/ 当开始着手实践 Hadoop 时,安装 Hadoop 往往会成为新手的一道门槛.尽管安装其实很简单,书上有写到, ...
- Hadoop安装教程_单机/伪分布式配置_Hadoop2.6.0/Ubuntu14.04
摘自: http://www.cnblogs.com/kinglau/p/3796164.html http://www.powerxing.com/install-hadoop/ 当开始着手实践 H ...
随机推荐
- js模仿jquery里的几个方法next, pre, nextAll, preAll
/*siblings函数, 选取node的所有兄弟节点*/ function siblings(node){ if(node.nodeType === 1){ node.flag = true; // ...
- datagrid中需要填写长文本,扩展的textarea
$.extend($.fn.datagrid.defaults.editors, { textarea: {//textarea就是你要自定义editor的名称 init: function(cont ...
- 在 ASP.NET MVC4 中使用 NInject
Ninject是一个快如闪电.超轻量级的基于.Net平台的依赖注入框架.它能够帮助你把应用程序分离成一个个松耦合.高内聚的模块,然后用一种灵活的方式组装起来.通过使用Ninject配套你的软件架构,那 ...
- HDU 5335 Walk Out
题意:在一个只有0和1的矩阵里,从左上角走到右下角, 每次可以向四个方向走,每个路径都是一个二进制数,求所有路径中最小的二进制数. 解法:先bfs求从起点能走到离终点最近的0,那么从这个点起只向下或向 ...
- Webdriver API (二)
(转载) 1.3 打开测试页面 对页面对测试,首先要打开被测试页面的地址(如:http://www.google.com),web driver 提供的get方法可以打开一个页面: // And no ...
- 关于hibernate映射过程中的笔记
MySQL遇到check the manual that corresponds to your MySQL server version for the right syntax错误 You hav ...
- STM32软件仿真的一个注意点
最近才做的板子由于自己的粗心把串口线搞反了,还好只有两条,飞线解决,而且现在还只是样板,但是还是应该引以为戒,以后做硬件一定要谨慎. 今天同事出差把CAN分析仪拿走了,本来在开发板上调试好的程序不知为 ...
- Her and his blog
Tonight, I read localhost8080 and some of her husband m67's blog. I found they are so geek and reall ...
- k-近邻分类的Python实现
参见<机器学习实战> # -*- coding:cp936 -*- #=========================================================== ...
- 设计原则 Design Principle
Design Principle设计原则 最近由于碰到要参与设计一个音频处理系统,有人提议用一个大的全局变量结构体来做状态信息交流的地方,引起了我对设计一个系统的思考,于是找到了如下资料,当然,关于这 ...