Frogger
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 28333   Accepted: 9208

Description

Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists' sunscreen, he wants to avoid swimming and instead reach her by jumping. 
Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps. 
To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence. 
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.

You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone.

Input

The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy's stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.

Output

For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.

Sample Input

2
0 0
3 4 3
17 4
19 4
18 5 0

Sample Output

Scenario #1
Frog Distance = 5.000 Scenario #2
Frog Distance = 1.414 刚开始不会做,看了网上的提示的后说是这是Dijkstra的变种,然后还风轻云淡的说更新条件变一下就行了,结果这句话坑大了,严格来说这就不是Dijkstra!
Dijkstra维护的是两个集合,加入到S集合之中的点已经确定正确,无需再计算,但是这题不一样,就因为这点WA了十多发。关于原算法中S里的点已经正确的证明移步我前一篇博文,但是对于这题用,同样的证明方法,得不出S里的点已经正确的结论。
首先假设S中的点已经最优,而且假设即将加入S的点u没有最优,那么存在一条路径 S里的点 + 任意一点 -> u 是最优的。
那么,如果此任意点属于S,因为维护小顶堆,所以下一个确实应该讲u加入,此处无矛盾。
然后,如果此任意点不属于S,那么就存在两种情况,要么D[s]>D[u],要么D[s]<D[u],但是两种情况都可以成立,也即是说这条假设的路径是可以存在的!
所以,将算法里对S的集合维护取消就对了,只是这还算迪杰斯特拉么?稍后补上另外几种算法的代码。
 #include <iostream>
#include <cmath>
#include <cstdio>
#include <vector>
#include <queue>
using namespace std; const int SIZE = ;
const int INF = 0x6fffffff;
int N;
int TEMP[SIZE][];
double D[SIZE];
bool S[SIZE];
struct Comp
{
bool operator ()(int & a,int & b)
{
return D[a] > D[b];
}
};
struct Node
{
int vec;
double cost;
};
vector<Node> G[SIZE]; double dis(int x_1,int y_1,int x_2,int y_2);
void dijkstra(int);
int main(void)
{
int count = ;
Node temp; while(scanf("%d",&N) && N)
{
for(int i = ;i <= N;i ++)
scanf("%d%d",&TEMP[i][],&TEMP[i][]);
for(int i = ;i <= N;i ++)
G[i].clear();
for(int i = ;i <= N;i ++)
for(int j = i + ;j <= N;j ++)
{
temp.vec = j;
temp.cost = dis(TEMP[i][],TEMP[i][],TEMP[j][],TEMP[j][]);
G[i].push_back(temp);
temp.vec = i;
G[j].push_back(temp);
} dijkstra();
printf("Scenario #%d\n",++ count);
printf("Frog Distance = %.3f\n",D[]);
puts("");
} return ;
} double dis(int x_1,int y_1,int x_2,int y_2)
{
return sqrt(pow((double)x_1 - x_2,) + pow((double)y_1 - y_2,));
} void dijkstra(int s)
{
fill(D,D + SIZE,INF);
fill(S,S + SIZE,false);
D[s] = ;
priority_queue<int,vector<int>,Comp> que;
que.push(s); while(!que.empty())
{
int cur = que.top();
que.pop();
if(cur == )
break;
/*S[cur] = true; 注释部分即为原Dij应有的部分,此题要移除,加上即WA*/ for(int i = ;i < G[cur].size();i ++)
if(/*!S[G[cur][i].vec] && */D[G[cur][i].vec] > max(G[cur][i].cost,D[cur]))
{
D[G[cur][i].vec] = max(G[cur][i].cost,D[cur]);
que.push(G[cur][i].vec);
}
}
}
#include <iostream>
#include <queue>
#include <cstdio>
#include <cmath>
using namespace std; const int INF = 0x6fffffff;
const int SIZE = ;
int N;
double D[SIZE];
struct Node
{
int vec;
double cost;
};
struct
{
int x,y;
}TEMP[SIZE];
vector<Node> G[SIZE]; double dis(int,int,int,int);
void SPFA(int);
int main(void)
{
Node temp;
int count = ; while(scanf("%d",&N) && N)
{
for(int i = ;i <= N;i ++)
scanf("%d%d",&TEMP[i].x,&TEMP[i].y);
for(int i = ;i <= N;i ++)
G[i].clear();
for(int i = ;i <= N;i ++)
for(int j = i + ;j <= N;j ++)
{
temp.vec = j;
temp.cost = dis(TEMP[i].x,TEMP[i].y,TEMP[j].x,TEMP[j].y);
G[i].push_back(temp);
temp.vec = i;
G[j].push_back(temp);
}
SPFA();
printf("Scenario #%d\n",++ count);
printf("Frog Distance = %.3f\n",sqrt(D[]));
puts("");
} return ;
} double dis(int x_1,int y_1,int x_2,int y_2)
{
return pow((double)x_1 - x_2,) + pow((double)y_1 - y_2,);
} void SPFA(int s)
{
queue<int> que;
fill(D,D + SIZE,INF);
D[s] = ;
que.push(s); while(!que.empty())
{
int cur = que.front();
que.pop(); for(int i = ;i < G[cur].size();i ++)
if(D[G[cur][i].vec] > max(D[cur],G[cur][i].cost))
{
D[G[cur][i].vec] = max(D[cur],G[cur][i].cost);
que.push(G[cur][i].vec);
}
}
}

POJ 2253 Frogger (最短路)的更多相关文章

  1. POJ 2253 Frogger 最短路 难度:0

    http://poj.org/problem?id=2253 #include <iostream> #include <queue> #include <cmath&g ...

  2. poj 2253 Frogger(最短路 floyd)

    题目:http://poj.org/problem?id=2253 题意:给出两只青蛙的坐标A.B,和其他的n-2个坐标,任一两个坐标点间都是双向连通的.显然从A到B存在至少一条的通路,每一条通路的元 ...

  3. POJ 2253 Frogger -- 最短路变形

    这题的坑点在POJ输出double不能用%.lf而要用%.f...真是神坑. 题意:给出一个无向图,求节点1到2之间的最大边的边权的最小值. 算法:Dijkstra 题目每次选择权值最小的边进行延伸访 ...

  4. POJ 2253 Frogger ( 最短路变形 || 最小生成树 )

    题意 : 给出二维平面上 N 个点,前两个点为起点和终点,问你从起点到终点的所有路径中拥有最短两点间距是多少. 分析 : ① 考虑最小生成树中 Kruskal 算法,在建树的过程中贪心的从最小的边一个 ...

  5. 最短路(Floyd_Warshall) POJ 2253 Frogger

    题目传送门 /* 最短路:Floyd算法模板题 */ #include <cstdio> #include <iostream> #include <algorithm& ...

  6. POJ 2253 Frogger ,poj3660Cow Contest(判断绝对顺序)(最短路,floyed)

    POJ 2253 Frogger题目意思就是求所有路径中最大路径中的最小值. #include<iostream> #include<cstdio> #include<s ...

  7. POJ 2253 Frogger(dijkstra 最短路

    POJ 2253 Frogger Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fion ...

  8. POJ. 2253 Frogger (Dijkstra )

    POJ. 2253 Frogger (Dijkstra ) 题意分析 首先给出n个点的坐标,其中第一个点的坐标为青蛙1的坐标,第二个点的坐标为青蛙2的坐标.给出的n个点,两两双向互通,求出由1到2可行 ...

  9. poj 2253 Frogger (dijkstra最短路)

    题目链接:http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissi ...

随机推荐

  1. GotGitHub

    github在线教程 http://www.worldhello.net/gotgithub/

  2. Win8制作和使用恢复盘

    制作和使用恢复盘要制作恢复盘,请执行以下操作:注:确保计算机连接到交流电源.1. 将指针移至屏幕的右上角或右下角以显示超级按钮,然后单击搜索.2. 根据操作系统的不同,执行以下某项操作:• 在 Win ...

  3. JedisPoolConfig配置

      JedisPoolConfig config = new JedisPoolConfig();   //连接耗尽时是否阻塞, false报异常,ture阻塞直到超时, 默认true config. ...

  4. JavaScript谁动了你的代码

    到目前为止,同学你知道了JavaScript的历史,也了解其"你想是啥就是啥"的变量系统.相信凭借你深厚的Java或者C++功底,再加上程序员特有的自傲气质,你肯定会信心满满:自信 ...

  5. 【转】 Volley NegativeArraySizeException 解决

    http://blog.csdn.net/very_caiing/article/details/46241531 今天在百度统计看项目上有一个crash比较高的bug: Java.lang.Nega ...

  6. Android---3种方式限制EditView输入字数(转载)

    方法一:利用TextWatcher editText.addTextChangedListener(new TextWatcher() { private CharSequence temp; pri ...

  7. alue of type java.lang.String cannot be converted to JSONObject

    /** * 4.0以下系统处理掉返回json的BOM头 * * @param jsonStr * @return */ public static String getJson(String json ...

  8. spring事务的传播特性

    所谓事务传播行为就是多个事务方法相互调用时,事务如何在这些方法间传播.Spring 支持 7 种事务传播行为: PROPAGATION_REQUIRED 如果当前没有事务,就新建一个事务,如果已经存在 ...

  9. 在MVC中动态读取JSON数据创建表格

    //使用getJSON // ("@Url.Action("GetAllUsers","User")" ,json文件的路径.也可以是 /M ...

  10. php常用代码(一)

    一:获取上个小时 方法1:date("H",strtotime("-1 hours"); 方法2:date('H',time()-60*60); 方法3:ech ...