题目大意

中文的。。直接搬过来。。。

司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队。一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P"表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:

如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。
现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。

题解

经典的状态压缩DP啦~~~~总算把这题过了~~~~~做完POJ3254再搞这题还是挺容易的~~~

对于当前第i行的放置情况,会影响到i-1以及i-2行的放置情况,我们可以先预处理一行的所有合法状态(用数组s表示)并记录此状态放置的大炮个数(数组sum表示),那怎么判断合法呢?很简单,对于状态s,只需要把s向右移一位即可,即(s>>1),然后判断一下s&(s>>1)是否为0,如果是,则不存在相邻的两个大炮,同理,还需要判断一下s&(s>>2)是否为0,即不存在距离为2的两个大炮。接下来就是状态转移了,由于会受前面两行的影响,所以状态转移方程得是三维的:dp[i][a][b]=max(dp[i][a][b],dp[i-1][b][c]+sum[a])(s[a]&s[b]==0 && s[b]&s[c]==0 && s[a]&s[c]==0)  表示第i行状态为s[a],并且i-1行状态为s[b]能够放置最多的大炮数量,如果i-2行的状态为s[c],并且三个状态能够兼容(即不存在有在同列的大炮),那么就i-1行状态为s[b],i-2行为状态s[c]的这个决策(dp[i-1][b][c])就能够转移到决策dp[i][a][b]

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
using namespace std;
#define MAXN 11
int dp[MAXN*10][100][100];
int line[MAXN*10],sum[MAXN*10],s[MAXN*10];
string str[MAXN*10];
int t;
bool OK(int x)
{
if(x&(x>>1)) return false;
if(x&(x>>2)) return false;
return true;
}
int getsum(int x)
{
int ret=0;
while(x)
{
ret+=(x&1);
x>>=1;
}
return ret;
}
void pre_solve(int m)
{
for(int i=0; i<(1<<m); i++)
if(OK(i))
{
s[t]=i;
sum[t]=getsum(i);
t++;
}
}
int main()
{
int n,m;
while(cin>>n>>m)
{
memset(dp,0,sizeof(dp));
memset(line,0,sizeof(line));
for(int i=1; i<=n; i++) cin>>str[i];
for(int i=1; i<=n; i++)
for(int j=0; j<m; j++)
line[i]|=(str[i][j]=='P'?1:0)<<j;
t=0;
pre_solve(m);
for(int i=0; i<t; i++)
if((s[i]&line[1])==s[i])
dp[1][i][0]=sum[i];
for(int i=2; i<=n; i++)
for(int a=0; a<t; a++)
if((s[a]&line[i])==s[a])
{
for(int b=0; b<t; b++)
if((s[b]&line[i-1])==s[b])
for(int c=0; c<t; c++)
if((s[c]&line[i-2])==s[c])
{
if(!(s[a]&s[b])&&!(s[a]&s[c])&&!(s[b]&s[c]))
{
dp[i][a][b]=max(dp[i][a][b],dp[i-1][b][c]+sum[a]);
}
}
}
int ans=0;
for(int a=0; a<t; a++)
for(int b=0; b<t; b++)
ans=max(ans,dp[n][a][b]);
cout<<ans<<endl;
}
return 0;
}

POJ1185 - 炮兵阵地(状态压缩DP)的更多相关文章

  1. POJ1185炮兵阵地(状态压缩 + dp)

    题目链接 题意:给出一张n * m的地图,其中 有的地方能放大炮,有的地方不能,大炮与上下左右两个单位范围内会相互攻击,问最多能放几个大炮 能放大炮为1不能放大炮为0,把每一行看做一个状态,要除去同一 ...

  2. POJ1185 炮兵阵地 状态压缩

    因为不知道不同的博客怎么转,就把别人的复制过来了,这个题解写的非常好,原地址为: http://hi.baidu.com/wangxustf/item/9138f80ce2292b8903ce1bc7 ...

  3. luogu2704 炮兵阵地 状态压缩DP

    题目大意:一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),在每一格平原地形上最多可以布置一支炮兵部队,能攻击到的区域:沿横向左右各两格,沿纵向上 ...

  4. poj 1185 炮兵阵地 状态压缩dp

    思路:定义一个三维数组dp[x][i][j]其中x为now和pre两种状态,now表示当前两行最优解,pre表示出了本行外,前两行的最优解.那么状态转移方程为 dp[now][j][k]=max(dp ...

  5. POJ 3254 炮兵阵地(状态压缩DP)

    题意:由方格组成的矩阵,每个方格可以放大炮用P表示,不可以放大炮用H表示,求放最多的大炮,大炮与大炮间不会互相攻击.大炮的攻击范围为两个方格. 分析:这次当前行的状态不仅和上一行有关,还和上上行有关, ...

  6. POJ - 1185 炮兵阵地 (状态压缩)

    题目大意:中文题目就不多说大意了 解题思路: 1.每行最多仅仅有十个位置,且不是山地就是平原,那么就能够用1表示山地,0表示平原,将每一行的状态进行压缩了 2.接着找出每行能放炮兵的状态.先不考虑其它 ...

  7. POJ1185 炮兵阵地 —— 状压DP

    题目链接:http://poj.org/problem?id=1185 炮兵阵地 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions ...

  8. [P2704][NOI2001]炮兵阵地 (状态压缩)

    最近抄状压的代码…… 然后盯上了这个题目 调试了一个晚上,终于A了 但是是对着宝典打的,我依然不懂状态压缩 那么下一步先把装压放一放,学一下树形DP吧 #include<cstdio> # ...

  9. poj1185 炮兵阵地 状压dp

    司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P"表示) ...

随机推荐

  1. ubuntu无线上网静态ip配置以及配置静态IP 之后无法正常上网的解决方案

    一. 配置无线网络的静态IP 编辑/etc/network/interfaces文件如下: auto lo wlan0 iface lo inet loopback iface wlan0 inet ...

  2. Nginx的介绍和使用

    http://blog.csdn.net/shimiso/article/details/8690897 1.什么是Nginx Nginx(发音同 engine x)是一款轻量级的Web 服务器/反向 ...

  3. 选择排序的MPI实现

    #include "stdafx.h" #include "mpi.h" #include <stdio.h> #include <math. ...

  4. 从iPhone4、iPhone5、iPhone6看手机外壳加工工艺进化史

    从iPhone4.iPhone5到iPhone6,苹果为我们推出了一代又一代新产品,让我们享受到最新的科技产品.每次不只是配置上的改变,苹果在工艺上也不断改变.下面就阐述一下我对这几款手机在设计和制造 ...

  5. KindEditor设置为过滤模式,但在代码模式下提交表单时不过虑HTML标签的解决方法

    KindEditor设置filterMode为true,但在代码模式下提交表单的话,发现并没有过虑掉自己不想保留的HTML标签. 这时只需同步内容前加上红色部分内容即可: onClick=" ...

  6. Samba 安全漏洞

    漏洞名称: Samba 安全漏洞 CNNVD编号: CNNVD-201403-239 发布时间: 2014-03-17 更新时间: 2014-03-17 危害等级: 中危   漏洞类型: 信任管理 威 ...

  7. [ZOJ 2836] Number Puzzle

    Number Puzzle Time Limit: 2 Seconds      Memory Limit: 65536 KB Given a list of integers (A1, A2, .. ...

  8. centos nginx 多端口配置过程记录

    1. 编辑 /usr/local/nginx/vhosts/  在此目录下增加一文件,如;ci.ainux.com,或复制一个文件 修改其中的端口和目录,更改log_format 名称 重启nginx ...

  9. file的getPath getAbsolutePath和getCanonicalPath的区别

    转自:http://www.blogjava.net/dreamstone/archive/2007/08/08/134968.html file的这几个取得path的方法各有不同,下边说说详细的区别 ...

  10. android应用分析之apk文件结构

            实际上,一个APK文件就是一个.zip格式的压缩包,我们可以用解压缩工具打开任何一个APK文件,由于代码混淆和加密,通过普通解压缩工具打开里面的文件或目录会看到各种乱码.一个典型的ap ...