POJ1185 - 炮兵阵地(状态压缩DP)
题目大意
中文的。。直接搬过来。。。
司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队。一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P"表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:
如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。
现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。
题解
经典的状态压缩DP啦~~~~总算把这题过了~~~~~做完POJ3254再搞这题还是挺容易的~~~
对于当前第i行的放置情况,会影响到i-1以及i-2行的放置情况,我们可以先预处理一行的所有合法状态(用数组s表示)并记录此状态放置的大炮个数(数组sum表示),那怎么判断合法呢?很简单,对于状态s,只需要把s向右移一位即可,即(s>>1),然后判断一下s&(s>>1)是否为0,如果是,则不存在相邻的两个大炮,同理,还需要判断一下s&(s>>2)是否为0,即不存在距离为2的两个大炮。接下来就是状态转移了,由于会受前面两行的影响,所以状态转移方程得是三维的:dp[i][a][b]=max(dp[i][a][b],dp[i-1][b][c]+sum[a])(s[a]&s[b]==0 && s[b]&s[c]==0 && s[a]&s[c]==0) 表示第i行状态为s[a],并且i-1行状态为s[b]能够放置最多的大炮数量,如果i-2行的状态为s[c],并且三个状态能够兼容(即不存在有在同列的大炮),那么就i-1行状态为s[b],i-2行为状态s[c]的这个决策(dp[i-1][b][c])就能够转移到决策dp[i][a][b]
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
using namespace std;
#define MAXN 11
int dp[MAXN*10][100][100];
int line[MAXN*10],sum[MAXN*10],s[MAXN*10];
string str[MAXN*10];
int t;
bool OK(int x)
{
if(x&(x>>1)) return false;
if(x&(x>>2)) return false;
return true;
}
int getsum(int x)
{
int ret=0;
while(x)
{
ret+=(x&1);
x>>=1;
}
return ret;
}
void pre_solve(int m)
{
for(int i=0; i<(1<<m); i++)
if(OK(i))
{
s[t]=i;
sum[t]=getsum(i);
t++;
}
}
int main()
{
int n,m;
while(cin>>n>>m)
{
memset(dp,0,sizeof(dp));
memset(line,0,sizeof(line));
for(int i=1; i<=n; i++) cin>>str[i];
for(int i=1; i<=n; i++)
for(int j=0; j<m; j++)
line[i]|=(str[i][j]=='P'?1:0)<<j;
t=0;
pre_solve(m);
for(int i=0; i<t; i++)
if((s[i]&line[1])==s[i])
dp[1][i][0]=sum[i];
for(int i=2; i<=n; i++)
for(int a=0; a<t; a++)
if((s[a]&line[i])==s[a])
{
for(int b=0; b<t; b++)
if((s[b]&line[i-1])==s[b])
for(int c=0; c<t; c++)
if((s[c]&line[i-2])==s[c])
{
if(!(s[a]&s[b])&&!(s[a]&s[c])&&!(s[b]&s[c]))
{
dp[i][a][b]=max(dp[i][a][b],dp[i-1][b][c]+sum[a]);
}
}
}
int ans=0;
for(int a=0; a<t; a++)
for(int b=0; b<t; b++)
ans=max(ans,dp[n][a][b]);
cout<<ans<<endl;
}
return 0;
}
POJ1185 - 炮兵阵地(状态压缩DP)的更多相关文章
- POJ1185炮兵阵地(状态压缩 + dp)
题目链接 题意:给出一张n * m的地图,其中 有的地方能放大炮,有的地方不能,大炮与上下左右两个单位范围内会相互攻击,问最多能放几个大炮 能放大炮为1不能放大炮为0,把每一行看做一个状态,要除去同一 ...
- POJ1185 炮兵阵地 状态压缩
因为不知道不同的博客怎么转,就把别人的复制过来了,这个题解写的非常好,原地址为: http://hi.baidu.com/wangxustf/item/9138f80ce2292b8903ce1bc7 ...
- luogu2704 炮兵阵地 状态压缩DP
题目大意:一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),在每一格平原地形上最多可以布置一支炮兵部队,能攻击到的区域:沿横向左右各两格,沿纵向上 ...
- poj 1185 炮兵阵地 状态压缩dp
思路:定义一个三维数组dp[x][i][j]其中x为now和pre两种状态,now表示当前两行最优解,pre表示出了本行外,前两行的最优解.那么状态转移方程为 dp[now][j][k]=max(dp ...
- POJ 3254 炮兵阵地(状态压缩DP)
题意:由方格组成的矩阵,每个方格可以放大炮用P表示,不可以放大炮用H表示,求放最多的大炮,大炮与大炮间不会互相攻击.大炮的攻击范围为两个方格. 分析:这次当前行的状态不仅和上一行有关,还和上上行有关, ...
- POJ - 1185 炮兵阵地 (状态压缩)
题目大意:中文题目就不多说大意了 解题思路: 1.每行最多仅仅有十个位置,且不是山地就是平原,那么就能够用1表示山地,0表示平原,将每一行的状态进行压缩了 2.接着找出每行能放炮兵的状态.先不考虑其它 ...
- POJ1185 炮兵阵地 —— 状压DP
题目链接:http://poj.org/problem?id=1185 炮兵阵地 Time Limit: 2000MS Memory Limit: 65536K Total Submissions ...
- [P2704][NOI2001]炮兵阵地 (状态压缩)
最近抄状压的代码…… 然后盯上了这个题目 调试了一个晚上,终于A了 但是是对着宝典打的,我依然不懂状态压缩 那么下一步先把装压放一放,学一下树形DP吧 #include<cstdio> # ...
- poj1185 炮兵阵地 状压dp
司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P"表示) ...
随机推荐
- python繁体中文到简体中文的转换
处理中文字符串遇到了繁体和简体中文的转换,python版: 1.下载zh_wiki.py及langconv zh_wiki.py:https://github.com/skydark/nstool ...
- Zookeeper + Hadoop + Hbase部署备忘
网上类似的文章很多,本文只是记录下来备忘.本文分四大步骤: 准备工作.安装zookeeper.安装hadoop.安装hbase,下面分别详细介绍: 一 准备工作 1. 下载 zookeeper.had ...
- NEERC 2014, Eastern subregional contest
最近做的一场比赛,把自己负责过的题目记一下好了. Problem B URAL 2013 Neither shaken nor stirred 题意:一个有向图,每个结点一个非负值,可以转移到其他结点 ...
- SPRING IN ACTION 第4版笔记-第九章Securing web applications-007-设置LDAP server比较密码(contextSource、root()、ldif()、)
一.LDAP server在哪 By default, Spring Security’s LDAP authentication assumes that the LDAP server is li ...
- Oracle 学习笔记 常用查询命令篇
1.查询某个用户下有多少张表 有时候很有用 select count(*) from dba_tables t where t.owner='SCOTT';
- movzbl和movsbl
汇编语言中最最常用的指令 -- 数据传送指令,也是我们接触的第一种类别的汇编指令.其指令的格式为:“mov 源操作数, 目的操作数”.mov系列支持从最小一个字节到最大双字的访问与传送.其中movb用 ...
- NFC(13)使用Android Beam技术传输文件
注意 Android Beam技术传输文件时nfc只负责连接两个手机,而传输文件实际是用蓝牙模块.且目前接收文件功能只是系统完成,不用自写个接收程序. 传输文件相关的重要api 从Android4.1 ...
- 关于Firefox浏览器如何支持ActiveX控件,一个小的Hellow World
今天尝试开发一个Firefox的插件.虽然比较简单,网上也有很多教程,但是感觉一些教程写的比较麻烦,在初步的开发过程中并没有用到那些东西,于是自己把开发过程记录下来.我是根据Mozilla官方教程开发 ...
- 设计模式 - chain of Responsibility
Chain of Responsibility也就是职责链模式,通过使用链式结构,使对象都有机会处理请求,从而避免请求的发送者与接受者间的耦合关系.将这些对象连成链,并沿着该链传递请求,直到有对象处理 ...
- DataTable导出到Excel(.NET 4.0)
最近在论坛里又看到很多关于DataTable(DataSet)导入Excel的帖子,我也温故知新一下,用VS2010重新整理了一个Sample.这个问题简化一下就是内存数据到文件,也就是遍历赋值,只不 ...