hdu 4599 Dice 概率DP
思路:
1.求f[n];dp[i]表示i个连续相同时的期望
则 dp[0]=1+dp[1]
dp[1]=1+(5dp[1]+dp[2])/6
……
dp[i]=1+(5dp[1]+dp[i+1])/6
……
dp[n]=0
可以求得f[n]=(6^n-1)/5.
2.求h[n];dp[i]表示i个连续相同的1时的期望
则 dp[0]=1+(5dp[0]+dp[1])/6
dp[1]=1+(5dp[0]+dp[2])/6
……
dp[i]=1+(5dp[0]+dp[i+1])/6
……
dp[n]=0
可以求得h[n]=(6^(n+1)-6)/5.
3.求g[m];dp[i]表示i个1时的期望
则 dp[0]=1+(5dp[0]+dp[1])/6
dp[1]=1+(5dp[1]+dp[2])/6
……
dp[i]=1+(5dp[i]+dp[i+1])/6
……
dp[n]=0
可以求得g[m]=6*m.
这样就有 m1>=(6^n-1)/30;m2>=(6^n-1)/5
分析易知(6^n-1)/30不能整除,所以m1=(6^n+24)/30 ; m2=(6^n-1)/5 .
代码如下:
#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<iomanip>
#include<cmath>
#include<cstring>
#include<vector>
#define ll __int64
#define M 2011
using namespace std;
ll pows(ll a,ll b,ll mod)
{
ll ans=;
while(b){
if(b&) ans=ans*a%mod;
b>>=;
a=a*a%mod;
}
return ans;
}
int main(){
ll n,m1,m2,p;
ll inv30=pows(,M-,M);
ll inv5=pows(,M-,M);
while(scanf("%I64d",&n)&&n){
p=pows(,n,);
m1=((p+)%M+M)%M*inv30%M;
m2=((p-)%M+M)%M*inv5%M;
printf("%I64d %I64d\n",m1,m2);
}
return ;
}
hdu 4599 Dice 概率DP的更多相关文章
- HDU 4599 Dice (概率DP+数学+快速幂)
题意:给定三个表达式,问你求出最小的m1,m2,满足G(m1) >= F(n), G(m2) >= G(n). 析:这个题是一个概率DP,但是并没有那么简单,运算过程很麻烦. 先分析F(n ...
- hdu 4652 Dice 概率DP
思路: dp[i]表示当前在已经投掷出i个不相同/相同这个状态时期望还需要投掷多少次 对于第一种情况有: dp[0] = 1+dp[1] dp[1] = 1+((m-1)*dp[1]+dp[2])/m ...
- HDU 3853LOOPS(简单概率DP)
HDU 3853 LOOPS 题目大意是说人现在在1,1,需要走到N,N,每次有p1的可能在元位置不变,p2的可能走到右边一格,有p3的可能走到下面一格,问从起点走到终点的期望值 这是弱菜做的第 ...
- Throwing Dice(概率dp)
C - Throwing Dice Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu Lig ...
- HDU - 1099 - Lottery - 概率dp
http://acm.hdu.edu.cn/showproblem.php?pid=1099 最最简单的概率dp,完全是等概率转移. 设dp[i]为已有i张票,还需要抽几次才能集齐的期望. 那么dp[ ...
- HDU 4405 【概率dp】
题意: 飞行棋,从0出发要求到n或者大于n的步数的期望.每一步可以投一下筛子,前进相应的步数,筛子是常见的6面筛子. 但是有些地方可以从a飞到大于a的b,并且保证每个a只能对应一个b,而且可以连续飞, ...
- HDU 4576 Robot(概率dp)
题目 /*********************复制来的大致题意********************** 有N个数字,M个操作, 区间L, R. 然后问经过M个操作后落在[L, R]的概率. * ...
- [HDU 4089]Activation[概率DP]
题意: 有n个人排队等着在官网上激活游戏.Tomato排在第m个. 对于队列中的第一个人.有以下情况: 1.激活失败,留在队列中等待下一次激活(概率为p1) 2.失去连接,出队列,然后排在队列的最后( ...
- hdu 3853 LOOPS 概率DP
简单的概率DP入门题 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include ...
随机推荐
- 【风马一族_Android】让app上传到Android市场的网站介绍
豌豆荚 开发者中心 http://open.wandoujia.com/account/info China app http://www.chinaapp.org
- WP开发笔记——不同Item显示不同ApplicationBar:适用于Pivot与Panorama
一.在xaml页面定义两个ApplicationBar: <phone:PhoneApplicationPage.Resources> <shell:ApplicationBar I ...
- Java操作MongoDB
上一篇文章: http://www.cnblogs.com/hoojo/archive/2011/06/01/2066426.html 介绍到了在MongoDB的控制台完成MongoDB的数据操作,通 ...
- openerp学习笔记 视图更新时删除已存在的菜单或其他对象
删除菜单示例: <delete id="base.menu_module_updates" model="ir.ui.menu"/><dele ...
- 将Unity3D游戏移植到Android平台上
将Unity3D游戏移植到Android平台是一件很容易的事情,只需要在File->Build Settings中选择Android平台,然后点击Switch Platform并Build出ap ...
- 【转】Eazfuscator.NET 3.3中混淆化需要注意的一些问题
对于DLL,Eazfuscator.NET默认不会混淆化任何公共成员,因为类库的公共成员很有可能被外界调用,而对于EXE的程序集,所有类型都可能被混淆化.注意上面这句话有一个“可能”,因为Eazfus ...
- linux 非缓冲io笔记
简介 在linux中,打开的的文件(可输入输出)标识就是一个int值,如下面的三个标准输入输出 STDIN_FILENO/STDOUT_FILENO/STDERR_FILENO这三个是标准输入输出,对 ...
- OBIEE 11g:Error:nQSError 36010 Server version 318 cannot read the newer version of the repository
biee11g升级到最新版以后,发现了一些bug,需要回退到原来的版本,卸载掉升级包以后,启动BI服务,会报上述错误.这是因为资料库文件已经升级为了最新版本.这时候我们需要将资料库文件进行降版本操作. ...
- Nginx开启gzip压缩功能
在Nginx安装完成之后,我们可以开启Gzip压缩功能,这里Nginx默认只能对text/html类型的文件进行压缩.下面的指令为开启Gzip的指令: gzip on; gzip_http_versi ...
- SAP如何使用关于序列号的表