水的问题。

以为很常见。青蛙跳楼梯。能跳一步可以跳两步,它实际上是一个斐波那契数。

注意。空间O(1)。

class Solution {
public:
int climbStairs(int n) {
int left = 1, right = 2;
if(n<=2)
return n;
int res;
for(int i=0;i<n-2;i++){
res = left+right;
left = right;
right = res;
}
return res;
}
};

版权声明:本文博主原创文章。博客,未经同意不得转载。

leetcode先刷_Climbing Stairs的更多相关文章

  1. [leetcode]_Climbing Stairs

    我敢保证这道题是在今早蹲厕所的时候突然冒出的解法.第一次接触DP题,我好伟大啊啊啊~ 题目:一个N阶的梯子,一次能够走1步或者2步,问有多少种走法. 解法:原始DP问题. 思路: 1.if N == ...

  2. [LeetCode] 70. Climbing Stairs 爬楼梯问题

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  3. [LeetCode] 70. Climbing Stairs 爬楼梯

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  4. leetCode 70.Climbing Stairs (爬楼梯) 解题思路和方法

    Climbing Stairs  You are climbing a stair case. It takes n steps to reach to the top. Each time you ...

  5. [LeetCode OJ]-Climbing Stairs

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  6. 42. leetcode 70. Climbing Stairs

    70. Climbing Stairs You are climbing a stair case. It takes n steps to reach to the top. Each time y ...

  7. Leetcode#70. Climbing Stairs(爬楼梯)

    题目描述 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解 ...

  8. [leetcode] 14. Climbing Stairs

    这道题leetcode上面写着是DP问题,问题是我一开始写了个简单的递归结果直接超时,所以没办法只好拿迭代来做了.题目如下: You are climbing a stair case. It tak ...

  9. LeetCode 70 Climbing Stairs(爬楼梯)(动态规划)(*)

    翻译 你正在爬一个楼梯. 它须要n步才干究竟顶部. 每次你能够爬1步或者2两步. 那么你有多少种不同的方法爬到顶部呢? 原文 You are climbing a stair case. It tak ...

随机推荐

  1. NDK-gdb的错误ERROR(不同于上一篇): Could not extract package's data directory...的解决方法

    这个问题比较龟毛. 我的系统在4.0.4上一直调试好好的,到了2.2的系统居然fail.能检查的地方全部检查过了,居然不行. 最后仔细差了一遍,居然是由于/data目录的属性是777导致.ndk-gd ...

  2. 类型自动转换引起的误解——QString可以赋值数字1,也能直接与0比较,真是昏倒!

    看以下代码,能编译通过: void MainWindow::on_pushButton_clicked() { QString str = "test"; ) { QMessage ...

  3. 在Ubuntu上录制视频和编辑(很全)

    Linux多媒体三剑客:GIMP,Inkscape,Blender3D Blender基金会制作的开源微电影Sintel:http://www.sintel.org/about电影采用Creative ...

  4. touch修改文件的修改时间和访问时间,ls --full-time显示文件详细,stat命令

    1. 同时修改文件的修改时间和访问时间 touch -d "2010-05-31 08:10:30" test.doc 2. 只修改文件的修改时间 touch -m -d &quo ...

  5. hdu 3221 Brute-force Algorithm(高速幂取模,矩阵高速幂求fib)

    http://acm.hdu.edu.cn/showproblem.php?pid=3221 一晚上搞出来这么一道题..Mark. 给出这么一个程序.问funny函数调用了多少次. 我们定义数组为所求 ...

  6. JavaBean在DAO设计模式简介

    一.信息系统开发框架 客户层-------显示层-------业务层---------数据层---------数据库 1.客户层:客户层是client,简单的来说就是浏览器. 2.显示层:JSP/Se ...

  7. [Cocos2d-x]CCSpriteFrameCache的使用

    文档: http://cocos2d.cocoachina.com/document/index/class?url=dc/dda/classcocos2d_1_1_c_c_sprite_frame_ ...

  8. graph driver-device mapper-02driver基本操作

    // 清除thin pool 1.1 func (d *Driver) Cleanup() error { // 停止thin pool err := d.DeviceSet.Shutdown() r ...

  9. 恶补jquery(四)jquery中事件--冒泡

    事件 当我们在打开一个页面的时候.浏览器会对页面进行解释运行,这实际上是通过运行事件来驱动的.在页面载入事件时,运行Load()事件,是这个事件实现浏览器解释运行代码的过程. 事件机制 事件中的冒泡现 ...

  10. poj - 1170 - Shopping Offers(减少国家dp)

    意甲冠军:b(0 <= b <= 5)商品的种类,每个人都有一个标签c(1 <= c <= 999),有需要购买若干k(1 <= k <=5),有一个单价p(1 & ...