number⋅x+product⋅y=1  有整数x,y解的条件是gcd(number, product) == 1.

  product用线段树维护一下,然后现学了个欧拉函数。

  可以这样假如x = p1^a1 * p2^a2 * p3^a3 * ... * pn^an,那么phi(x) = (p1 - 1) * p1^(a1 - 1) + (p2 - 1) * p2^(a2 - 1) + (p3 - 1) * p3^(a3 - 1) + ... + (pn - 1) * pn^(an - 1).

  速度奇慢,明早优化。。。

 #include <bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for (int i = a; i <= b; i++)
#define drep(i, a, b) for (int i = a; i >= b; i--)
#define REP(i, a, b) for (int i = a; i < b; i++)
#define mp make_pair
#define pb push_back
#define clr(x) memset(x, 0, sizeof(x))
#define xx first
#define yy second
int pri[] = { , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , }; const int maxn = , mod = ;
int cnt[maxn << ][];
void Push_up(int o) { rep(i, , ) cnt[o][i] = cnt[o << ][i] + cnt[o << | ][i]; }
void fac(int o, int v) {
rep(i, , ) cnt[o][i] = ;
while (v != ) {
for (int i = ; i <= && v != ; i++)
while (v != && v % pri[i] == ) cnt[o][i]++, v /= pri[i];
}
}
void update(int o, int l, int r, int x, int v) {
if (l == r) {
fac(o, v);
return;
}
int mid = l + r >> ;
if (x <= mid) update(o << , l, mid, x, v);
else update(o << | , mid + , r, x, v);
Push_up(o);
}
int ret[];
void query(int o, int l, int r, int ql, int qr) {
if (ql <= l && r <= qr) {
rep(i, , ) ret[i] += cnt[o][i];
return;
}
int mid = l + r >> ;
if (ql <= mid) query(o << , l, mid, ql, qr);
if (qr > mid) query(o << | , mid + , r, ql, qr);
}
int POW(int base, int num) {
long long ha = ;
long long b = base;
while (num) {
if (num & ) ha *= b, ha %= mod;
b *= b;
b %= mod;
num >>= ;
}
return ha;
}
int main() {
int n; scanf("%d", &n);
rep(i, , ) update(, , , i, );
while (n--) {
int op, x, y; scanf("%d%d%d", &op, &x, &y);
if (op == ) update(, , , x, y);
else {
memset(ret, , sizeof(ret));
query(, , , x, y);
long long ans = ;
rep(i, , ) {
if (!ret[i]) continue;
ans *= POW(pri[i], ret[i] - );
ans %= mod;
ans *= pri[i] - ;
ans %= mod;
}
printf("%lld\n", ans);
}
}
}

uoj#38. 【清华集训2014】奇数国【欧拉函数】的更多相关文章

  1. HYSBZ - 3813 奇数国 欧拉函数+树状数组(线段树)

    HYSBZ - 3813奇数国 中文题,巨苟题,巨无敌苟!!首先是关于不相冲数,也就是互质数的处理,欧拉函数是可以求出互质数,但是这里的product非常大,最小都2100000,这是不可能实现的.所 ...

  2. 【数论&线段树】【P4140】[清华集训2015]奇数国

    Description 有一个长为 \(n\) 的序列,保证序列元素不超过 \(10^6\) 且其质因数集是前60个质数集合的子集.初始时全部都是 \(3\),有 \(m\) 次操作,要么要求支持单点 ...

  3. uoj #46[清华集训2014]玄学

    uoj 因为询问是关于一段连续区间内的操作的,所以对操作构建线段树,这里每个点维护若干个不交的区间,每个区间\((l,r,a,b)\)表示区间\([l,r]\)内的数要变成\(ax+b\) 每次把新操 ...

  4. BZOJ3817 清华集训2014 Sum 类欧几里得

    传送门 令\(\sqrt r = x\) 考虑将\(-1^{\lfloor d \sqrt r \rfloor}\)魔改一下 它等于\(1-2 \times (\lfloor dx \rfloor \ ...

  5. UOJ.41.[清华集训2014]矩阵变换(稳定婚姻)

    题目链接 稳定婚姻问题:有n个男生n个女生,每个男/女生对每个女/男生有一个不同的喜爱程度.给每个人选择配偶. 若不存在 x,y未匹配,且x喜欢y胜过喜欢x当前的配偶,y喜欢x也胜过y当前的配偶 的完 ...

  6. bzoj 3816&&uoj #41. [清华集训2014]矩阵变换

    稳定婚姻问题: 有n个男生,n个女生,所有女生在每个男生眼里有个排名,反之一样. 将男生和女生两两配对,保证不会出现婚姻不稳定的问题. 即A-1,B-2 而A更喜欢2,2更喜欢A. 算法流程: 每次男 ...

  7. AC日记——【清华集训2014】奇数国 uoj 38

    #38. [清华集训2014]奇数国 思路: 题目中的number与product不想冲: 即为number与product互素: 所以,求phi(product)即可: 除一个数等同于在模的意义下乘 ...

  8. 【UOJ#38】【清华集训2014】奇数国

    考虑欧拉函数的性质,60很小,压位存下线段树每个节点出现质数. #include<bits/stdc++.h> ; ; typedef long long ll; using namesp ...

  9. 清华集训2014 day1 task3 奇数国

    题目 题目看起来好像很难的样子!其实不然,这是最简单的一道题. 算法 首先要注意的是: \(number \cdot x + product \cdot y = 1\) ,那么我们称\(number\ ...

随机推荐

  1. Core Data & MagicalRecord

    iOS 本地数据持久化存储: 1.plist 2.归档 3.NSUserDefaults 4.NSFileManager 5.数据库 一.CoreData概述 CoreData是苹果自带的管理数据库的 ...

  2. 学习笔记——Windows下cocos2d-x,eclipse中自编译

    cocos2d-x创建的安卓项目导入eclipse后. 在项目属性中配置Builders. 在eclipse编译还需要配置相应的变量,即后面提到的cygwin编译中要添加的变量. D:/cygdriv ...

  3. 高性能IO模型浅析(转)

    转自:http://www.cnblogs.com/fanzhidongyzby/p/4098546.html 是我目前看到的解释IO模型最清晰的文章,当然啦,如果想要详细的进一步了解还是继续啃蓝宝书 ...

  4. JavaScript算法与数据结构知识点记录

    JavaScript算法与数据结构知识点记录 zhanweifu

  5. SEO优化之 主页上加上nofollow

    <a href=http://www.主页.cn/ rel=”nofollow”>这里是锚文字</a> <光年日志分析系统>来分析抓取比较多的是哪个网页,没用的no ...

  6. 关于自定义jar包(tomcat)的添加

    1 鼠标右击工程 选择 properties 或者 Ait + Enter 2 选择Libraries 3 点击Add Library... 4 选择User Library  点击 Next 5 如 ...

  7. 开发板S3C2440挂起NFS步骤

    第一.安装.配置.启动FTP.SSH或NFS服务 参考韦东山的嵌入式linux应用开发完全手册 http://pan.baidu.com/s/1o79h3n0 第二.windows.linux以及开发 ...

  8. springMVC记录系统日志的几种方式

    在项目开发中往往需要记录一些用户操作的系统日志到数据库,而不仅仅是记录在文件中或者log4j上.     第一种是最简单最原始也是最繁琐最笨的办法:即每个需要记录的操作入口方法中去调用新增日志的接口. ...

  9. 转:web_reg_save_param的使用详解

    [摘要]利用实际案例说明如何使用Mercury LoadRunner提取包含在 HTML 页内的动态信息并创建参数. [关键词]性能测试,压力测试,Mercury LoadRunner 应用范围 在使 ...

  10. 自行修改android.jar使其包含隐藏api

    1) 从指定版本的rom内获取到framework.jar 2) 解压framework.jar和android sdk内的android.jar 3) 将framework.jar解出来的东西拷到a ...