hdu 4454 Stealing a Cake(三分法)
给定一个起始点,一个矩形,一个圆,三者互不相交。求从起始点->圆->矩形的最短距离。
自己画一画就知道距离和会是凹函数,不过不是一个凹函数。按与水平向量夹角为圆心角求圆上某点坐标,[0, PI] , [PI, 2*pi]两个区间的点会有两个凹函数。所以要做两次三分才行。
#include<algorithm>
#include<iostream>
#include<fstream>
#include<sstream>
#include<cstring>
#include<cstdlib>
#include<string>
#include<vector>
#include<cstdio>
#include<queue>
#include<stack>
#include<cmath>
#include<map>
#include<set>
#define FF(i, a, b) for(int i=a; i<b; i++)
#define FD(i, a, b) for(int i=a; i>=b; i--)
#define REP(i, n) for(int i=0; i<n; i++)
#define CLR(a, b) memset(a, b, sizeof(a))
#define LL long long
#define PB push_back
#define eps 1e-10
#define debug puts("**debug**");
using namespace std;
const double PI = acos(-1); struct Point
{
double x, y;
Point(double x=0, double y=0):x(x), y(y){}
};
typedef Point Vector; Vector operator + (Vector a, Vector b) { return Vector(a.x+b.x, a.y+b.y); }
Vector operator - (Vector a, Vector b) { return Vector(a.x-b.x, a.y-b.y); }
Vector operator * (Vector a, double p) { return Vector(a.x*p, a.y*p); }
Vector operator / (Vector a, double p) { return Vector(a.x/p, a.y/p); }
bool operator < (const Point& a, const Point& b)
{
return a.x < b.x || (a.x == b.x && a.y < b.y);
}
int dcmp(double x)
{
if(fabs(x) < eps) return 0; return x < 0 ? -1 : 1;
}
bool operator == (const Point& a, const Point& b)
{
return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0;
} double Dot(Vector a, Vector b) { return a.x*b.x + a.y*b.y; }
double Length(Vector a) { return sqrt(Dot(a, a)); }
double Cross(Vector a, Vector b) { return a.x*b.y - a.y*b.x; }
double DistanceToSegment(Point p, Point a, Point b)
{
if(a == b) return Length(p-a);
Vector v1 = b-a, v2 = p-a, v3 = p-b;
if(dcmp(Dot(v1, v2)) < 0) return Length(v2);
else if(dcmp(Dot(v1, v3)) > 0) return Length(v3);
else return fabs(Cross(v1, v2)) / Length(v1);
}
struct Circle
{
Point c;
double r;
Circle(){}
Circle(Point c, double r):c(c), r(r){}
Point point(double a) //根据圆心角求点坐标
{
return Point(c.x+cos(a)*r, c.y+sin(a)*r);
}
}o; Point p, p1, p2, p3, p4, s;
double a, b, c, d; double Calc(double x)
{
p = o.point(x);
double d1 = DistanceToSegment(p, p1, p2),
d2 = DistanceToSegment(p, p2, p3),
d3 = DistanceToSegment(p, p3, p4),
d4 = DistanceToSegment(p, p4, p1);
//点p到矩形最近距离加上s到p距离
return min(min(d1, d2), min(d3, d4)) + Length(s-p);
} double solve()
{
double L, R, m, mm, mv, mmv;
L = 0; R = PI;
while (L + eps < R)
{
m = (L + R) / 2;
mm = (m + R) / 2;
mv = Calc(m);
mmv = Calc(mm);
if (mv <= mmv) R = mm; //三分法求最大值时改为mv>=mmv
else L = m;
}
double ret = Calc(L);
L = PI; R = 2*PI;
while (L + eps < R)
{
m = (L + R) / 2;
mm = (m + R) / 2;
mv = Calc(m);
mmv = Calc(mm);
if (mv <= mmv) R = mm;
else L = m;
}
return min(ret, Calc(L));
} int main()
{
while(scanf("%lf%lf", &s.x, &s.y))
{
if(s.x == 0 && s.y == 0) break;
scanf("%lf%lf%lf", &o.c.x, &o.c.y, &o.r);
scanf("%lf%lf%lf%lf", &a, &b, &c, &d);
//确定矩形四个点坐标,左上点开始 逆时针
double maxx, maxy, minx, miny;
maxx = max(a, c); maxy = max(b, d);
minx = min(a, c); miny = min(b, d);
p1 = Point(minx, maxy);
p2 = Point(minx, miny);
p3 = Point(maxx, miny);
p4 = Point(maxx, maxy);
double ans = solve();
printf("%.2f\n", ans);
}
return 0;
}
hdu 4454 Stealing a Cake(三分法)的更多相关文章
- hdu 4454 Stealing a Cake 三分法
很容易想到三分法求解,不过要分别在0-pi,pi-2pi进行三分. 另外也可以直接暴力枚举…… 代码如下: #include<iostream> #include<stdio.h&g ...
- hdu 4454 Stealing a Cake(三分之二)
pid=4454" target="_blank" style="">题目链接:hdu 4454 Stealing a Cake 题目大意:给定 ...
- hdu 4454 Stealing a Cake (三分)
Stealing a Cake Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 4454 Stealing a Cake(枚举角度)
题目链接 去年杭州现场赛的神题..枚举角度..精度也不用注意.. #include <iostream> #include <cstdio> #include <cstr ...
- HDU 4454 Stealing a Cake --枚举
题意: 给一个点,一个圆,一个矩形, 求一条折线,从点出发,到圆,再到矩形的最短距离. 解法: 因为答案要求输出两位小数即可,精确度要求不是很高,于是可以试着爆一发,暴力角度得到圆上的点,然后求个距离 ...
- hdu 4454 Stealing a Cake
简单的计算几何: 可以把0-2*pi分成几千份,然后找出最小的: 也可以用三分: #include<cstdio> #include<cmath> #include<al ...
- HDU 4454 - Stealing a Cake(三分)
我比较快速的想到了三分,但是我是从0到2*pi区间进行三分,并且漏了一种点到边距离的情况,一直WA了好几次 后来画了下图才发现,0到2*pi区间内是有两个极值的,每个半圆存在一个极值 以下是代码 #i ...
- hdu 4454 Stealing a Cake(计算几何:最短距离、枚举/三分)
题意:已知起点.圆.矩形,要求计算从起点开始,经过圆(和圆上任一点接触即可),到达矩形的路径的最短距离.(可以穿过园). 分析:没什么好的方法,凭感觉圆上的每个点对应最短距离,应该是一个凸函数,用三分 ...
- hdu 4771 Stealing Harry Potter's Precious(bfs)
题目链接:hdu 4771 Stealing Harry Potter's Precious 题目大意:在一个N*M的银行里,贼的位置在'@',如今给出n个宝物的位置.如今贼要将全部的宝物拿到手.问最 ...
随机推荐
- Effective C++_笔记_条款00_基本术语
(整理自Effctive C++,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 下面是每一位C++程序员都应该了解的C++词汇. 1 C++中 ...
- JS、JQury - 文本框内容改变事件
例子: 效果: 前端代码: <%@ Page Language="C#" AutoEventWireup="true" CodeFile="De ...
- 使用微软Remote Desktop 手机远程控制 windows
在我的电脑上右击选择“属性”,打开属性面板.然后点击左边的“远程设置”. 2/2 如果你要操作的计算机出入外网(大多数是家里网线进线直连电脑),就选择远程桌面选择框中的“允许运行任意版本远程桌面的计算 ...
- MFC的消息反射机制
1.消息反射解释: 父窗口将子窗口发给它的通知消息,首先反射回子窗口进行处理(即给子窗口一个机会,让子窗口处理此消息),这样通知消息就有机会能被子窗口自身进行处理. 2.MFC中引入消息反射的原因: ...
- MFC消息映射的原理:笔记
多态的实现机制有两种,一是通过查找绝对位置表,二是查找名称表:两者各有优缺点,那么为什么mfc的消息映射采用了第二种方法,而不是c++使用的第一种呢?因为在mfc的gui类库是一个庞大的继承体系,而里 ...
- Test oracle db iops
Today, i need to test one database's iops and do something for oracle db's io test. How to test the ...
- Android本地视频播放器开发--视频解码
在上一章Android本地视频播放器开发--SDL编译编译中编译出sdl的支持库,当时我们使用的2.0,但是有些api被更改了,所以在以下的使用者中我们使用SDL1.3的库,这个库我会传上源码以及编译 ...
- ThinkPHP运算符 与 SQL运算符 对比表
ThinkPHP运算符 与 SQL运算符 对比表 TP运算符 SQL运算符 样例 实际查询条件 eq = $map['id'] = array('eq',100); 等效于:$map['id'] = ...
- 【iOS】iOS的iTunes文件共享,在程序Document路径
有时候程序开发须要通过沙盒中的 documents目录与用户共享文件,iTunes默认是不支持iTunes file Sharing的,首先设置 info-list的Application suppo ...
- Android短信监听(二)——利用ContentObserver实现短信监听
MainActivity例如以下: package cc.testsmslistener; import cc.testsmslistener.SMSContentObserver.MessageLi ...