A * B Problem Plus
A * B Problem Plus
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1402
FFT
(FFT的详细证明参见算法导论第三十章)
一个多项式有两种表达方式:
1.系数表示法,系数表示的多项式相乘,时间复杂度为O(n^2);
2.点值表示法,点值表示的多项式相乘,时间复杂度为O(n).
简单的说,FFT能办到的就是将系数表示的多项式转化为点值表示,其时间复杂度为O(nlgn),而将点值表示的多项式转化为系数表示需要IFFT(FFT的逆运算),其形式与FFT相似,时间复杂度也为O(nlgn).
这道题需要用FFT将两个大数转化为点值表示,相乘后再用IFFT将点值表示转化回系数表示,总时间复杂度为O(nlgn).
代码如下:
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<iostream>
#define N 200005
using namespace std;
const double pi=acos(-1.0);
struct Complex{
double r,i;
Complex(double r=,double i=):r(r),i(i){};
Complex operator + (const Complex &rhs){
return Complex(r+rhs.r,i+rhs.i);
}
Complex operator - (const Complex &rhs){
return Complex(r-rhs.r,i-rhs.i);
}
Complex operator * (const Complex &rhs){
return Complex(r*rhs.r-i*rhs.i,i*rhs.r+r*rhs.i);
}
}a[N],b[N],c[N];
char s1[N],s2[N];
int ans[N],n1,n2,len;
inline void sincos(double theta,double &p0,double &p1){
p0=sin(theta);
p1=cos(theta);
}
void FFT(Complex P[], int n, int oper){
for(int i=,j=;i<n-;i++){
for(int s=n;j^=s>>=,~j&s;);
if(i<j)swap(P[i],P[j]);
}
Complex unit_p0;
for(int d=;(<<d)<n;d++){
int m=<<d,m2=m*;
double p0=pi/m*oper;
sincos(p0,unit_p0.i,unit_p0.r);
for(int i=;i<n;i+=m2){
Complex unit=;
for(int j=;j<m;j++){
Complex &P1=P[i+j+m],&P2=P[i+j];
Complex t=unit*P1;
P1=P2-t;
P2=P2+t;
unit=unit*unit_p0;
}
}
}
if(oper==-)for(int i=;i<len;i++)P[i].r/=len;
}
void Conv(Complex a[],Complex b[],int len){//求卷积
FFT(a,len,);//FFT
FFT(b,len,);//FFT
for(int i=;i<len;++i)c[i]=a[i]*b[i];
FFT(c,len,-);//IFFT
}
void init(char *s1,char *s2){
len=;
n1=strlen(s1),n2=strlen(s2);
while(len<*n1||len<*n2)len<<=;
int idx;
for(idx=;idx<n1;++idx){
a[idx].r=s1[n1--idx]-'';
a[idx].i=;
}
while(idx<len){
a[idx].r=a[idx].i=;
idx++;
}
for(idx=;idx<n2;++idx){
b[idx].r=s2[n2--idx]-'';
b[idx].i=;
}
while(idx<len){
b[idx].r=b[idx].i=;
idx++;
}
}
int main(void){
while(scanf("%s%s",s1,s2)==){
init(s1,s2);
Conv(a,b,len);
for(int i=;i<len+len;++i)ans[i]=;//93ms
//memset(ans,0,sizeof(ans));//140ms
int index;
for(index=;index<len||ans[index];++index){
ans[index]+=(c[index].r+0.5);
ans[index+]+=(ans[index]/);
ans[index]%=;
}
while(index>&&!ans[index])index--;
for(;index>=;--index)printf("%d",ans[index]);
printf("\n");
}
}
A * B Problem Plus的更多相关文章
- 1199 Problem B: 大小关系
求有限集传递闭包的 Floyd Warshall 算法(矩阵实现) 其实就三重循环.zzuoj 1199 题 链接 http://acm.zzu.edu.cn:8000/problem.php?id= ...
- No-args constructor for class X does not exist. Register an InstanceCreator with Gson for this type to fix this problem.
Gson解析JSON字符串时出现了下面的错误: No-args constructor for class X does not exist. Register an InstanceCreator ...
- C - NP-Hard Problem(二分图判定-染色法)
C - NP-Hard Problem Crawling in process... Crawling failed Time Limit:2000MS Memory Limit:262144 ...
- Time Consume Problem
I joined the NodeJS online Course three weeks ago, but now I'm late about 2 weeks. I pay the codesch ...
- Programming Contest Problem Types
Programming Contest Problem Types Hal Burch conducted an analysis over spring break of 1999 and ...
- hdu1032 Train Problem II (卡特兰数)
题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能. (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- [LeetCode] Water and Jug Problem 水罐问题
You are given two jugs with capacities x and y litres. There is an infinite amount of water supply a ...
- [LeetCode] The Skyline Problem 天际线问题
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
- PHP curl报错“Problem (2) in the Chunked-Encoded data”解决方案
$s = curl_init(); curl_setopt($s, CURLOPT_POST, true); curl_setopt($s, CURLOPT_POSTFIELDS, $queryStr ...
随机推荐
- ASP.NET Zero--6.菜单加权限
1.打开文件MpaNavigationProvider.cs [..\MyCompanyName.AbpZeroTemplate.Web\Areas\Mpa\Startup\MpaNavigation ...
- 在VirtualBox上安装CentOS7
文章的出处:http://jingyan.baidu.com/article/9c69d48f8ec01613c8024e58.html 工具: VirtualBox-5.1.2-108956-Win ...
- [z] .net与java建立WebService再互相调用
http://blog.csdn.net/yenange/article/details/5824967 : .net建立WebService,在Java中调用. 1.在vs中新建web 简单修改一下 ...
- openstack私有云布署实践【8.1 身份认证keystone的API创建(科兴环境)】
其中一台controller上面加入环境变量,我选kxcontroller1,关注的是endpoint的名称不一样,其它创建的参数与测试环境一致 export OS_TOKEN=venicchina ...
- D3.js
html代码: <div id="id"> <p>Apple</p> <p id="aa">Pear</p ...
- c# PictureBox 的图像上使用鼠标画矩形框
C# 中在图像上画框,通过鼠标来实现主要有四个消息响应函数MouseDown, MouseMove, MouseUp, Paint重绘函数实现.当鼠标键按下时开始画框,鼠标键抬起时画框结束. Poin ...
- centos搭建svn服务器
1.在centos6.5上面搭建svn服务器,安装svn服务器:yum install subversion 2.在任意目录下创建仓库目录,这里放在/data/mypros目录下 3.执行命令:svn ...
- CoreJavaE10V1P3.5 第3章 Java的基本编程结构-3.5 操作符
最基本的操作为赋值操作,= 即赋值操作符 基本的算术操作为加.减.乘.除取模.除取余数,其对应操作符为 +.-.*./.% 算术操作与赋值操作联合衍生为:+=:-=:*=:/=:%=: 由于处理器硬件 ...
- PDF在线阅读 FlexPaper 惰性加载 ;
关于PDF在线阅读问题,比较普遍的做法是转换成swf文件来浏览:由于项目需要,就用 flexpaper 来实现了下,功能比较简单:但是文件的惰性加载确实让笔者挠头了一把! 下面是笔者的方法: 采用流的 ...
- 关于angularjs+typeahead的整合
和angularjs-xeditable的基本相似,主要区别在于前者用于普通input中,后者用于xeditable中 在angularjs-xeditable需要自动提示的地方要用e-uib-typ ...