多标记学习--Learning from Multi-Label Data
传统分类问题,即多类分类问题是,假设每个示例仅具有单个标记,且所有样本的标签类别数|L|大于1,然而,在很多现实世界的应用中,往往存在单个示例同时具有多重标记的情况。 而在多分类问题中,每个样本所含标签是类别集合的非空子集,近年来,在机器学习和数据挖掘等相关领域,多类分类问题得到广泛研究。其原因主要有:1. 应用领域非常广泛。如,多媒体信息检索,推荐,查询分类,医疗诊断等。2. 一些挑战性的研究问题涉及到多类分类问题。例如,处理能从大量类别中,处理稀少类别并且发现之间的关系等。
目前,对多标记分类问题方法研究主要集中在以下两个方面:首先是问题转换方法,即改造数据使其适应现有算法的方法,该类方法主要通过对多标记训练数据样本进行处理,将多标记学习问题转换为其它已知的学习问题进行求解;其次是算法适应方法,即改造现有算法使其适应数据样本,该类方法是通过对传统的机器学习方法进行扩展或改进,使其适应多标记数据学习问题。
已有不少处理多标记学习问题的框架,例如mulan还是非常方便的,Mulan中提供了很多相关算法,对weka熟悉的话拿来稍微熟悉下就可以了。它和weka一样的开源,在mulan.examples下有示例函数。
下载安装详细流程:http://mulan.sourceforge.net/download.html
这里列出关于多标记学习的一些相关文献:
- G. Tsoumakas, I. Katakis, I. Vlahavas, "A Review of Multi-Label Classification Methods", in: Proceedings of the 2nd ADBIS Workshop on Data Mining and Knowledge Discovery (ADMKD 2006), pp 99-109, September 2006, Thessaloniki, Greece.
- G. Tsoumakas, I. Katakis, "Multi-Label Classification: An Overview", International Journal of Data Warehousing and Mining, 3(3):1-13, 2007.
- G. Tsoumakas, I. Vlahavas, "Random k-Labelsets: An Ensemble Method for Multilabel Classification", Proc. 18th European Conference on Machine Learning (ECML 2007), pp. 406-417, Warsaw, Poland, 17-21 September 2007.
- K. Trohidis, G. Tsoumakas, G. Kalliris, I. Vlahavas. "Multilabel Classification of Music into Emotions". Proc. 9th International Conference on Music Information Retrieval (ISMIR 2008), pp. 325-330, Philadelphia, PA, USA, 2008.
- E. Spyromitros, G. Tsoumakas, I. Vlahavas, “An Empirical Study of Lazy Multilabel Classification Algorithms”, Proc. 5th Hellenic Conference on Artificial Intelligence (SETN 2008), Springer, Syros, Greece, 2008.
- G. Tsoumakas, I. Katakis, I. Vlahavas, “Effective and Efficient Multilabel Classification in Domains with Large Number of Labels”, Proc. ECML/PKDD 2008 Workshop on Mining Multidimensional Data (MMD'08), Antwerp, Belgium, 2008.
- I. Katakis, G. Tsoumakas, I. Vlahavas, “Multilabel Text Classification for Automated Tag Suggestion”, Proceedings of the ECML/PKDD 2008 Discovery Challenge, Antwerp, Belgium, 2008.
- A. Dimou, G. Tsoumakas, V. Mezaris, I. Kompatsiaris, I. Vlahavas, “An Empirical Study Of Multi-Label Learning Methods For Video Annotation”, 7th International Workshop on Content-Based Multimedia Indexing, IEEE, Chania, Crete, 2009
- G. Nasierding, G. Tsoumakas, A. Kouzani, “Clustering Based Multi-Label Classification for Image Annotation and Retrieval”, 2009 IEEE International Conference on Systems, Man, and Cybernetics, IEEE, 2009.
- G. Tsoumakas, A. Dimou, E. Spyromitros, V. Mezaris, I. Kompatsiaris, I. Vlahavas, “Correlation-Based Pruning of Stacked Binary Relevance Models for Multi-Label Learning”, Proceedings of the 1st International Workshop on Learning from Multi-Label Data (MLD'09), G. Tsoumakas, Min-Ling Zhang, Zhi-Hua Zhou (Ed.), pp. 101-116, Bled, Slovenia, 2009.
多标记学习--Learning from Multi-Label Data的更多相关文章
- 少标签数据学习:宾夕法尼亚大学Learning with Few Labeled Data
目录 Few-shot image classification Three regimes of image classification Problem formulation A flavor ...
- .NET MVC 学习笔记(五)— Data Validation
.NET MVC 学习笔记(五)—— Data Validation 在实际应用中,我们需要对数据进行增查改删业务,在添加和修改过程中,无论你编写什么样的网页程序,都需要对用户的数据进行验证,以确数据 ...
- Learning Spark: Lightning-Fast Big Data Analysis 中文翻译
Learning Spark: Lightning-Fast Big Data Analysis 中文翻译行为纯属个人对于Spark的兴趣,仅供学习. 如果我的翻译行为侵犯您的版权,请您告知,我将停止 ...
- 《从0到1学习Flink》—— 如何自定义 Data Source ?
前言 在 <从0到1学习Flink>-- Data Source 介绍 文章中,我给大家介绍了 Flink Data Source 以及简短的介绍了一下自定义 Data Source,这篇 ...
- vue学习笔记之:为何data是一个方法
vue学习笔记之:为何data是一个方法 在vue开发中,我们可以发现,data中的属性值是在function中return出来的.可为何data必须是一个函数呢?我们先看官方的解释: 当一个组件被定 ...
- 《从0到1学习Flink》—— 如何自定义 Data Sink ?
前言 前篇文章 <从0到1学习Flink>-- Data Sink 介绍 介绍了 Flink Data Sink,也介绍了 Flink 自带的 Sink,那么如何自定义自己的 Sink 呢 ...
- 不平衡学习 Learning from Imbalanced Data
问题: ICC警情数据分类不均,30+分类,最多的分类数据数量1w+条,只有10个类别数量超过1k,大部分分类数量少于100条. 解决办法: 下采样:通过非监督学习,找出每个分类中的异常点,减少数据. ...
- 排序学习(learning to rank)中的ranknet pytorch简单实现
一.理论部分 理论部分网上有许多,自己也简单的整理了一份,这几天会贴在这里,先把代码贴出,后续会优化一些写法,这里将训练数据写成dataset,dataloader样式. 排序学习所需的训练样本格式如 ...
- data mining,machine learning,AI,data science,data science,business analytics
数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics ...
随机推荐
- SSH的整合
SSH的整合 struts2和hibernate的配置我这里就不多说了,先把两个有关的东西说下.一个是所有的包.struts2+hibernate3+spring2.5我包准备放上去给大家下载. ht ...
- 关于Ajax无刷新分页技术的一些研究 c#
关于Ajax无刷新分页技术的一些研究 c# 小弟新手,求大神有更好的解决方案,指教下~ 以前做项目,用过GridView的刷新分页,也用过EasyUI的封装好的分页技术,最近在老项目的基础上加新功能, ...
- hdu 1671 Phone List(字典树)
知道bug的时候我眼泪掉下来... 我的第一道字典树,看了字典树的注意事项和实现方式,我写这道题的时候格外认真,就是奔着1A去的.结果这是几A来着? 第一遍写的时候提交MLA,我看了一下,是因为我释放 ...
- Java-继承的应用
class array { private int[] temp; private int foot; public array(int len) //为temp数组规定大小,并开辟空间,申 ...
- CoreCRM 开发实录 —— 单元测试之 Mock UserManager 和 SignInManager
单元测试的核心就是:只测试眼前的逻辑.这就要求所有的依赖项都要使用仿类来代替,也就是所谓的 Mock Object.在测试 ProfileRepository 和 AccountController ...
- webStorm支持.wxml文件高亮显示
微信小程序官方说明需要在微信开发者工具中开发运行,但这个工具着实不咋地. 我是使用webstrom编辑,然后在微信开发者工具中热加载查看效果,因为webstrom默认并不支持*.wxml,添加使用xm ...
- ubuntu 16.04安装mips交叉编译
1. 在 /etc/apt/sources.list 文件末尾添加下面的更新源: deb http://ftp.de.debian.org/debian squeeze main deb http:/ ...
- FZU 2086 餐厅点餐(模拟)
Problem 2086 餐厅点餐 Problem Description Jack最近喜欢到学校餐厅吃饭,好吃干净还便宜. 在学校餐厅,有a种汤,b种饭,c种面条,d种荤菜,e种素菜. 为了保证膳食 ...
- CODE[VS]-蛇形矩阵-模拟-天梯白银
题目描述 Description 小明玩一个数字游戏,取个n行n列数字矩阵(其中n为不超过100的奇数),数字的填补方法为:在矩阵中心从1开始以逆时针方向绕行,逐圈扩大,直到n行n列填满数字,请输出该 ...
- usaco月赛,2017.1总结
T1:跳舞的奶牛 大致题意:一个体积为k的舞台能够同时容纳k只奶牛一起跳舞,他们每头奶牛的跳舞时间不同,如果有一只奶牛跳完了第k+1头奶牛就会立刻上场跳舞,当所有奶牛跳完舞以后我们认为这次表演结束.现 ...