传统分类问题,即多类分类问题是,假设每个示例仅具有单个标记,且所有样本的标签类别数|L|大于1,然而,在很多现实世界的应用中,往往存在单个示例同时具有多重标记的情况。 而在多分类问题中,每个样本所含标签是类别集合的非空子集,近年来,在机器学习和数据挖掘等相关领域,多类分类问题得到广泛研究。其原因主要有:1. 应用领域非常广泛。如,多媒体信息检索,推荐,查询分类,医疗诊断等。2. 一些挑战性的研究问题涉及到多类分类问题。例如,处理能从大量类别中,处理稀少类别并且发现之间的关系等。

目前,对多标记分类问题方法研究主要集中在以下两个方面:首先是问题转换方法,即改造数据使其适应现有算法的方法,该类方法主要通过对多标记训练数据样本进行处理,将多标记学习问题转换为其它已知的学习问题进行求解;其次是算法适应方法,即改造现有算法使其适应数据样本,该类方法是通过对传统的机器学习方法进行扩展或改进,使其适应多标记数据学习问题。

已有不少处理多标记学习问题的框架,例如mulan还是非常方便的,Mulan中提供了很多相关算法,对weka熟悉的话拿来稍微熟悉下就可以了。它和weka一样的开源,在mulan.examples下有示例函数。

下载安装详细流程:http://mulan.sourceforge.net/download.html

这里列出关于多标记学习的一些相关文献:

  1. G. Tsoumakas, I. Katakis, I. Vlahavas, "A Review of Multi-Label Classification Methods", in: Proceedings of the 2nd ADBIS Workshop on Data Mining and Knowledge Discovery (ADMKD 2006), pp 99-109, September 2006, Thessaloniki, Greece.
  2. G. Tsoumakas, I. Katakis, "Multi-Label Classification: An Overview", International Journal of Data Warehousing and Mining, 3(3):1-13, 2007.
  3. G. Tsoumakas, I. Vlahavas, "Random k-Labelsets: An Ensemble Method for Multilabel Classification", Proc. 18th European Conference on Machine Learning (ECML 2007), pp. 406-417, Warsaw, Poland, 17-21 September 2007.
  4. K. Trohidis, G. Tsoumakas, G. Kalliris, I. Vlahavas. "Multilabel Classification of Music into Emotions". Proc. 9th International Conference on Music Information Retrieval (ISMIR 2008), pp. 325-330, Philadelphia, PA, USA, 2008.
  5. E. Spyromitros, G. Tsoumakas, I. Vlahavas, “An Empirical Study of Lazy Multilabel Classification Algorithms”, Proc. 5th Hellenic Conference on Artificial Intelligence (SETN 2008), Springer, Syros, Greece, 2008.
  6. G. Tsoumakas, I. Katakis, I. Vlahavas, “Effective and Efficient Multilabel Classification in Domains with Large Number of Labels”, Proc. ECML/PKDD 2008 Workshop on Mining Multidimensional Data (MMD'08), Antwerp, Belgium, 2008.
  7. I. Katakis, G. Tsoumakas, I. Vlahavas, “Multilabel Text Classification for Automated Tag Suggestion”, Proceedings of the ECML/PKDD 2008 Discovery Challenge, Antwerp, Belgium, 2008.
  8. A. Dimou, G. Tsoumakas, V. Mezaris, I. Kompatsiaris, I. Vlahavas, “An Empirical Study Of Multi-Label Learning Methods For Video Annotation”, 7th International Workshop on Content-Based Multimedia Indexing, IEEE, Chania, Crete, 2009
  9. G. Nasierding, G. Tsoumakas, A. Kouzani, “Clustering Based Multi-Label Classification for Image Annotation and Retrieval”, 2009 IEEE International Conference on Systems, Man, and Cybernetics, IEEE, 2009.
  10. G. Tsoumakas, A. Dimou, E. Spyromitros, V. Mezaris, I. Kompatsiaris, I. Vlahavas, “Correlation-Based Pruning of Stacked Binary Relevance Models for Multi-Label Learning”, Proceedings of the 1st International Workshop on Learning from Multi-Label Data (MLD'09), G. Tsoumakas, Min-Ling Zhang, Zhi-Hua Zhou (Ed.), pp. 101-116, Bled, Slovenia, 2009.

多标记学习--Learning from Multi-Label Data的更多相关文章

  1. 少标签数据学习:宾夕法尼亚大学Learning with Few Labeled Data

    目录 Few-shot image classification Three regimes of image classification Problem formulation A flavor ...

  2. .NET MVC 学习笔记(五)— Data Validation

    .NET MVC 学习笔记(五)—— Data Validation 在实际应用中,我们需要对数据进行增查改删业务,在添加和修改过程中,无论你编写什么样的网页程序,都需要对用户的数据进行验证,以确数据 ...

  3. Learning Spark: Lightning-Fast Big Data Analysis 中文翻译

    Learning Spark: Lightning-Fast Big Data Analysis 中文翻译行为纯属个人对于Spark的兴趣,仅供学习. 如果我的翻译行为侵犯您的版权,请您告知,我将停止 ...

  4. 《从0到1学习Flink》—— 如何自定义 Data Source ?

    前言 在 <从0到1学习Flink>-- Data Source 介绍 文章中,我给大家介绍了 Flink Data Source 以及简短的介绍了一下自定义 Data Source,这篇 ...

  5. vue学习笔记之:为何data是一个方法

    vue学习笔记之:为何data是一个方法 在vue开发中,我们可以发现,data中的属性值是在function中return出来的.可为何data必须是一个函数呢?我们先看官方的解释: 当一个组件被定 ...

  6. 《从0到1学习Flink》—— 如何自定义 Data Sink ?

    前言 前篇文章 <从0到1学习Flink>-- Data Sink 介绍 介绍了 Flink Data Sink,也介绍了 Flink 自带的 Sink,那么如何自定义自己的 Sink 呢 ...

  7. 不平衡学习 Learning from Imbalanced Data

    问题: ICC警情数据分类不均,30+分类,最多的分类数据数量1w+条,只有10个类别数量超过1k,大部分分类数量少于100条. 解决办法: 下采样:通过非监督学习,找出每个分类中的异常点,减少数据. ...

  8. 排序学习(learning to rank)中的ranknet pytorch简单实现

    一.理论部分 理论部分网上有许多,自己也简单的整理了一份,这几天会贴在这里,先把代码贴出,后续会优化一些写法,这里将训练数据写成dataset,dataloader样式. 排序学习所需的训练样本格式如 ...

  9. data mining,machine learning,AI,data science,data science,business analytics

    数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics ...

随机推荐

  1. SSH的整合

    SSH的整合 struts2和hibernate的配置我这里就不多说了,先把两个有关的东西说下.一个是所有的包.struts2+hibernate3+spring2.5我包准备放上去给大家下载. ht ...

  2. 关于Ajax无刷新分页技术的一些研究 c#

    关于Ajax无刷新分页技术的一些研究 c# 小弟新手,求大神有更好的解决方案,指教下~ 以前做项目,用过GridView的刷新分页,也用过EasyUI的封装好的分页技术,最近在老项目的基础上加新功能, ...

  3. hdu 1671 Phone List(字典树)

    知道bug的时候我眼泪掉下来... 我的第一道字典树,看了字典树的注意事项和实现方式,我写这道题的时候格外认真,就是奔着1A去的.结果这是几A来着? 第一遍写的时候提交MLA,我看了一下,是因为我释放 ...

  4. Java-继承的应用

    class array {  private int[] temp;  private int foot;  public array(int len)   //为temp数组规定大小,并开辟空间,申 ...

  5. CoreCRM 开发实录 —— 单元测试之 Mock UserManager 和 SignInManager

    单元测试的核心就是:只测试眼前的逻辑.这就要求所有的依赖项都要使用仿类来代替,也就是所谓的 Mock Object.在测试 ProfileRepository 和 AccountController ...

  6. webStorm支持.wxml文件高亮显示

    微信小程序官方说明需要在微信开发者工具中开发运行,但这个工具着实不咋地. 我是使用webstrom编辑,然后在微信开发者工具中热加载查看效果,因为webstrom默认并不支持*.wxml,添加使用xm ...

  7. ubuntu 16.04安装mips交叉编译

    1. 在 /etc/apt/sources.list 文件末尾添加下面的更新源: deb http://ftp.de.debian.org/debian squeeze main deb http:/ ...

  8. FZU 2086 餐厅点餐(模拟)

    Problem 2086 餐厅点餐 Problem Description Jack最近喜欢到学校餐厅吃饭,好吃干净还便宜. 在学校餐厅,有a种汤,b种饭,c种面条,d种荤菜,e种素菜. 为了保证膳食 ...

  9. CODE[VS]-蛇形矩阵-模拟-天梯白银

    题目描述 Description 小明玩一个数字游戏,取个n行n列数字矩阵(其中n为不超过100的奇数),数字的填补方法为:在矩阵中心从1开始以逆时针方向绕行,逐圈扩大,直到n行n列填满数字,请输出该 ...

  10. usaco月赛,2017.1总结

    T1:跳舞的奶牛 大致题意:一个体积为k的舞台能够同时容纳k只奶牛一起跳舞,他们每头奶牛的跳舞时间不同,如果有一只奶牛跳完了第k+1头奶牛就会立刻上场跳舞,当所有奶牛跳完舞以后我们认为这次表演结束.现 ...