多标记学习--Learning from Multi-Label Data
传统分类问题,即多类分类问题是,假设每个示例仅具有单个标记,且所有样本的标签类别数|L|大于1,然而,在很多现实世界的应用中,往往存在单个示例同时具有多重标记的情况。 而在多分类问题中,每个样本所含标签是类别集合的非空子集,近年来,在机器学习和数据挖掘等相关领域,多类分类问题得到广泛研究。其原因主要有:1. 应用领域非常广泛。如,多媒体信息检索,推荐,查询分类,医疗诊断等。2. 一些挑战性的研究问题涉及到多类分类问题。例如,处理能从大量类别中,处理稀少类别并且发现之间的关系等。
目前,对多标记分类问题方法研究主要集中在以下两个方面:首先是问题转换方法,即改造数据使其适应现有算法的方法,该类方法主要通过对多标记训练数据样本进行处理,将多标记学习问题转换为其它已知的学习问题进行求解;其次是算法适应方法,即改造现有算法使其适应数据样本,该类方法是通过对传统的机器学习方法进行扩展或改进,使其适应多标记数据学习问题。
已有不少处理多标记学习问题的框架,例如mulan还是非常方便的,Mulan中提供了很多相关算法,对weka熟悉的话拿来稍微熟悉下就可以了。它和weka一样的开源,在mulan.examples下有示例函数。
下载安装详细流程:http://mulan.sourceforge.net/download.html
这里列出关于多标记学习的一些相关文献:
- G. Tsoumakas, I. Katakis, I. Vlahavas, "A Review of Multi-Label Classification Methods", in: Proceedings of the 2nd ADBIS Workshop on Data Mining and Knowledge Discovery (ADMKD 2006), pp 99-109, September 2006, Thessaloniki, Greece.
- G. Tsoumakas, I. Katakis, "Multi-Label Classification: An Overview", International Journal of Data Warehousing and Mining, 3(3):1-13, 2007.
- G. Tsoumakas, I. Vlahavas, "Random k-Labelsets: An Ensemble Method for Multilabel Classification", Proc. 18th European Conference on Machine Learning (ECML 2007), pp. 406-417, Warsaw, Poland, 17-21 September 2007.
- K. Trohidis, G. Tsoumakas, G. Kalliris, I. Vlahavas. "Multilabel Classification of Music into Emotions". Proc. 9th International Conference on Music Information Retrieval (ISMIR 2008), pp. 325-330, Philadelphia, PA, USA, 2008.
- E. Spyromitros, G. Tsoumakas, I. Vlahavas, “An Empirical Study of Lazy Multilabel Classification Algorithms”, Proc. 5th Hellenic Conference on Artificial Intelligence (SETN 2008), Springer, Syros, Greece, 2008.
- G. Tsoumakas, I. Katakis, I. Vlahavas, “Effective and Efficient Multilabel Classification in Domains with Large Number of Labels”, Proc. ECML/PKDD 2008 Workshop on Mining Multidimensional Data (MMD'08), Antwerp, Belgium, 2008.
- I. Katakis, G. Tsoumakas, I. Vlahavas, “Multilabel Text Classification for Automated Tag Suggestion”, Proceedings of the ECML/PKDD 2008 Discovery Challenge, Antwerp, Belgium, 2008.
- A. Dimou, G. Tsoumakas, V. Mezaris, I. Kompatsiaris, I. Vlahavas, “An Empirical Study Of Multi-Label Learning Methods For Video Annotation”, 7th International Workshop on Content-Based Multimedia Indexing, IEEE, Chania, Crete, 2009
- G. Nasierding, G. Tsoumakas, A. Kouzani, “Clustering Based Multi-Label Classification for Image Annotation and Retrieval”, 2009 IEEE International Conference on Systems, Man, and Cybernetics, IEEE, 2009.
- G. Tsoumakas, A. Dimou, E. Spyromitros, V. Mezaris, I. Kompatsiaris, I. Vlahavas, “Correlation-Based Pruning of Stacked Binary Relevance Models for Multi-Label Learning”, Proceedings of the 1st International Workshop on Learning from Multi-Label Data (MLD'09), G. Tsoumakas, Min-Ling Zhang, Zhi-Hua Zhou (Ed.), pp. 101-116, Bled, Slovenia, 2009.
多标记学习--Learning from Multi-Label Data的更多相关文章
- 少标签数据学习:宾夕法尼亚大学Learning with Few Labeled Data
目录 Few-shot image classification Three regimes of image classification Problem formulation A flavor ...
- .NET MVC 学习笔记(五)— Data Validation
.NET MVC 学习笔记(五)—— Data Validation 在实际应用中,我们需要对数据进行增查改删业务,在添加和修改过程中,无论你编写什么样的网页程序,都需要对用户的数据进行验证,以确数据 ...
- Learning Spark: Lightning-Fast Big Data Analysis 中文翻译
Learning Spark: Lightning-Fast Big Data Analysis 中文翻译行为纯属个人对于Spark的兴趣,仅供学习. 如果我的翻译行为侵犯您的版权,请您告知,我将停止 ...
- 《从0到1学习Flink》—— 如何自定义 Data Source ?
前言 在 <从0到1学习Flink>-- Data Source 介绍 文章中,我给大家介绍了 Flink Data Source 以及简短的介绍了一下自定义 Data Source,这篇 ...
- vue学习笔记之:为何data是一个方法
vue学习笔记之:为何data是一个方法 在vue开发中,我们可以发现,data中的属性值是在function中return出来的.可为何data必须是一个函数呢?我们先看官方的解释: 当一个组件被定 ...
- 《从0到1学习Flink》—— 如何自定义 Data Sink ?
前言 前篇文章 <从0到1学习Flink>-- Data Sink 介绍 介绍了 Flink Data Sink,也介绍了 Flink 自带的 Sink,那么如何自定义自己的 Sink 呢 ...
- 不平衡学习 Learning from Imbalanced Data
问题: ICC警情数据分类不均,30+分类,最多的分类数据数量1w+条,只有10个类别数量超过1k,大部分分类数量少于100条. 解决办法: 下采样:通过非监督学习,找出每个分类中的异常点,减少数据. ...
- 排序学习(learning to rank)中的ranknet pytorch简单实现
一.理论部分 理论部分网上有许多,自己也简单的整理了一份,这几天会贴在这里,先把代码贴出,后续会优化一些写法,这里将训练数据写成dataset,dataloader样式. 排序学习所需的训练样本格式如 ...
- data mining,machine learning,AI,data science,data science,business analytics
数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics ...
随机推荐
- C++套接字类CxUdpSocket的设计
C++套接字类CxUdpSocket的设计 这是一个小巧的C++套接字类,类名.函数名和变量名均采用匈牙利命名法.小写的x代表我的姓氏首字母(谢欣能),个人习惯而已,如有雷同,纯属巧合. CxUdpS ...
- C#基础原理拾遗——引用类型的值传递和引用传递
C#基础原理拾遗——引用类型的值传递和引用传递 以前写博客不深动,只搭个架子,像做笔记,没有自己的思考,也没什么人来看.这个毛病得改,就从这一篇开始… 最近准备面试,深感基础之重要,奈何我不是计算机科 ...
- 压缩文件 compress files 以7z 格式及解压 或者别的格式
主要是为了能大量的减少文件使用空间,为了能节约带宽. 那么就用了7z的压缩方式. 这里,使用了7z的压缩方式,硬生生的将一个10k多的图片压缩成了3k左右的包.图片是不好压缩的,这个压缩比比zip g ...
- Ubuntu 创建启动器
首先我们要了解,Ubuntu 的 Dash 里所有程序都是在 /usr/share/applications 中的,所以我们的思路很简单——建一个类似于“快捷方式”一样的东西扔进去就好了.所以第一步自 ...
- 设置RichEdit相关颜色说明
1.设置RichEdit客户区的背景颜色 要设置RichEdit的背景色,需要发送 EM_SETBKGNDCOLOR 消息给RichEdit控件,关于该消息的说明:wParam参数 为颜色选项,如果是 ...
- Symfony3 更改生成CRUD目录步骤
---恢复内容开始--- 今天是2017-01-16号,项目零零散散的进行着: 由于Symfony3生成的crud在app目录需要转移到相应的Budle下面,记录以下过程: 我使用的是Symfony3 ...
- Ubuntu16.04 server下配置MySQL,并开启远程连接
背景 最近正在学nodejs,想到曾经有台云服务器,但是很久不用了,由于怕麻烦,一股脑的把云主机重装了个Ubuntu系统,于是配置MySQL成了配置服务中的一个环节(node用不用MySQL不管,主要 ...
- Mysql 5.6 解压版配置方案
# For advice on how to change settings please see # http://dev.mysql.com/doc/refman/5.6/en/server-co ...
- 在vim编辑器中,删除操作
我这里在编辑一个很大的文件,有几万行,都是文件名sheetid, 中间有很多空行,我现在要做的事情就有要把这个文件中的空行都删除掉,这个本来想在ultraedit里面完成的,结果弄了好半天都没有搞定, ...
- python字符串和列表
import sys#sys.argv[0] 被设定为指定模块的全名#脚本名和附加参数传入一个名为 sys.argv 的字符串列表.你能够获取这个列表通过执行 import sys,列表的长度大于等于 ...