These are vectors:

They can be multiplied using the "Dot Product" (also see Cross Product).

Calculating

You can calculate the Dot Product of two vectors this way:

a · b = |a| × |b| × cos(θ)

Where:
|a| is the magnitude (length) of vector a
|b| is the magnitude (length) of vector b
θ is the angle between a and b

So we multiply the length of a times the length of b, then multiply by the cosine of the angle between a and b

OR you can calculate it this way:

a · b = ax × bx + ay × by

So we multiply the x's, multiply the y's, then add.

Both methods work!

Example: Calculate the dot product of vectors a and b:

a · b = |a| × |b| × cos(θ)

a · b = 10 × 13 × cos(59.5°)

a · b = 10 × 13 × 0.5075...

a · b = 65.98... = 66 (rounded)

a · b = ax × bx + ay × by

a · b = -6 × 5 + 8 × 12

a · b = -30 + 96

a · b = 66

Both methods came up with the same result (after rounding)

Also note that we used minus 6 for ax (it is heading in the negative x-direction)

Note: you can use the Vector Calculator to help you.

Why cos(θ) ?

OK, to multiply two vectors it makes sense to multiply their lengths together but only when they point in the same direction.

So we make one "point in the same direction" as the other by multiplying by cos(θ):

We take the component of a
that lies alongside b

Like shining a light to see
where the shadow lies

THEN we multiply !

It works exactly the same if we "projected" b alongside a then multiplied:

Because it doesn't matter which order we do the multiplication:

|a| × |b| × cos(θ) = |a| × cos(θ) × |b|

Right Angles

When two vectors are at right angles to each other the dot product is zero.

Example: calculate the Dot Product for:

a · b = |a| × |b| × cos(θ)

a · b = | a| × | b| × cos(90°)

a · b = | a| × | b| × 0

a · b = 0

a · b = ax × bx + ay × by

a · b = -12 × 12 + 16 × 9

a · b = -144 + 144

a · b = 0

This can be a handy way to find out if two vectors are at right angles.

Three or More Dimensions

This all works fine in 3 (or more) dimensions, too.

And can actually be very useful!

Example: Sam has measured the end-points of two poles, and wants to know the angle between them:

We have 3 dimensions, so don't forget the z-components:

a · b = ax × bx + ay × by + az × bz

a · b = 9 × 4 + 2 × 8 + 7 × 10

a · b = 36 + 16 + 70

a · b = 122

Now for the other formula:

a · b = |a| × |b| × cos(θ)

But what is |a| ? It is the magnitude, or length, of the vector a. We can use Pythagoras:

  • |a| = √(42 + 82 + 102)
  • |a| = √(16 + 64 + 100)
  • |a| = √180

Likewise for |b|:

  • |b| = √(92 + 22 + 72)
  • |b| = √(81 + 4 + 49)
  • |b| = √134

And we know from the calculation above that a · b = 122, so:

a · b = |a| × |b| × cos(θ)

122 = √180 × √134 × cos(θ)

cos(θ) = 122 / (√180 × √134)

cos(θ) = 0.7855...

θ = cos -1(0.7855...) = 38.2...°

Done!

I tried a calculation like that once, but worked all in angles and distances ... it was very hard, involved lots of trigonometry, and my brain hurt. The method above is much easier.

Cross Product

The Dot Product gives a scalar (ordinary number) answer, and is sometimes called the scalar product.

But there is also the Cross Product which gives a vector as an answer, and is sometimes called the vector product.

Dot Product的更多相关文章

  1. [UCSD白板题] Minimum Dot Product

    Problem Introduction The dot product of two sequences \(a_1,a_2,\cdots,a_n\) and \(b_1,b_2,\cdots,b_ ...

  2. FB面经Prepare: Dot Product

    Conduct Dot Product of two large Vectors 1. two pointers 2. hashmap 3. 如果没有额外空间,如果一个很大,一个很小,适合scan小的 ...

  3. CUDA Samples: dot product(使用零拷贝内存)

    以下CUDA sample是分别用C++和CUDA实现的点积运算code,CUDA包括普通实现和采用零拷贝内存实现两种,并对其中使用到的CUDA函数进行了解说,code参考了<GPU高性能编程C ...

  4. 向量点积(Dot Product),向量叉积(Cross Product)

    参考的是<游戏和图形学的3D数学入门教程>,非常不错的书,推荐阅读,老外很喜欢把一个东西解释的很详细. 1.向量点积(Dot Product) 向量点积的结果有什么意义?事实上,向量的点积 ...

  5. CUDA Samples: Dot Product

    以下CUDA sample是分别用C++和CUDA实现的两个非常大的向量实现点积操作,并对其中使用到的CUDA函数进行了解说,各个文件内容如下: common.hpp: #ifndef FBC_CUD ...

  6. vector - vector product

    the inner product Givens two vectors \(x,y\in \mathbb{R}^n\), the quantity \(x^\top y\), sometimes c ...

  7. CF 405C Unusual Product(想法题)

    题目链接: 传送门 Domino Effect time limit per test:1 second     memory limit per test:256 megabytes Descrip ...

  8. Cross Product

    Cross Product These are two vectors: They can be multiplied using the "Cross Product" (als ...

  9. 对NumPy中dot()函数的理解

    今天学习到numpy基本的运算方法,遇到了一个让我比较难理解的问题.就是dot函数是如何对矩阵进行运算的. 一.dot()的使用 参考文档:https://docs.scipy.org/doc/num ...

随机推荐

  1. Eclipse 使用简记

    Eclipse 使用简记 本文针对 Eclipse Neon (4.6)版本进行说明,具体而言是 Eclipse IDE for Java EE Developers . 下载 Eclipse ecl ...

  2. Angular-ui-router + oclazyload + requirejs实现资源随route懒加载

    刚开始用angularjs做项目的时候,我用的是ng-router,觉得加载并不好.所以就用了ui-router,考虑到在app上网页加载速度太慢,所以我就想到了用懒加载,看下是否能提升性能,提高加载 ...

  3. AngularJs中,如何在父元素中调用子元素为自定义Directive中定义的函数?

    最近一段时间准备使用AngularJs中的自定义Directive重构一下代码. 在这里说明一下,把自定义控件封装成Directive并不一定是要复用,而是要让代码结构更加清晰.就好像你将一个长方法拆 ...

  4. git换行符之autoCRLF配置的意义

    关于git换行符处理的问题,我查了一查,自己的设置中,global-config中设了autocrlf=false,systemwide中将autocrlf设成了true. 关于配置的作用域,syst ...

  5. PHP Cookei记录用户历史浏览信息的代码

    [基础]Cookie常用方法:$_COOKIE['RecordLuHuiDUDU'] 得到Cookiesetcookie('RecordLuHuiDUDU',",time()-3600*24 ...

  6. hibernate异常:org.hibernate.NonUniqueObjectException

    异常:org.hibernate.NonUniqueObjectException 提示:a different object with the same identifier value was a ...

  7. 基于TCP协议的网络编程

    TCP通信协议是一种可靠的传输层协议,它在通信的两端各建立一个Socket,从而在通信的两端之间形成虚拟网络链路.一旦建立了虚拟的网络链路,两端的程序就可以通过虚拟链路进行通信.Java使用Socke ...

  8. maven 阿里镜像

    <mirror> <id>alimaven</id> <mirrorOf>central</mirrorOf> <name>al ...

  9. ubuntu tips

    1.ibus-setup 2.tips:

  10. javascript history对象

    window.history.[属性|方法] 0.history对象记录了用户曾经浏览过的页面(URL),并可以实现浏览器前进与后退相似导航的功能. 1.属性 2.方法