Yolov3参数解释以及答疑
目录
参数解析
训练答疑
参数解析
[net]
#Testing
#batch=1 //test:一次一个图片
#subdivisions=1
#Training
batch=32 //一次迭代送入网络的图片数
subdivisions=8 //一次迭代分成subdivisions次前向计算,这里是32/8
width=416 //图片宽高 ,要求width==height, 并且为32的倍数。增大分辨率可以检测到更加细小的物体
height=416
channels=3
momentum=0.9 //影响梯度下降到最优的速度,一般默认0.9。如想深入了解可以学习吴恩达深度学习课,
decay=0.0005 //权重衰减正则项系数,防止过拟合
angle=0 //旋转角度增加训练样本
saturation = 1.5 //增加饱和度增加训练样本
exposure = 1.5 //增加曝光增加训练样本
hue=.1 //通过调整色调来增加训练样本
learning_rate=0.0001 //学习率,一般默认为0.001
burn_in=1000 //1000次后学习率的下降采用policy方式
max_batches = 500200 //=最大迭代次数*bathch
policy=steps //学习率下降方式,exp,steps,constant等
steps=400000,450000 //到了400000步的时候和450000步的时候学习率会再衰减scales(0.1,0.1)。
scales=.1,.1
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky //leaky_relu 卷基层输入先标准化,后面用非线性激活函数leaky_relu
# Downsample
[convolutional]
batch_normalize=1
filters=64
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear //借鉴了resnet网络的shortcut方式可以加深网络
# Downsample
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=512
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
######################
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=18#255 //3*(4+1+classes)
activation=linear
[yolo]
mask = 6,7,8
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=1
num=9
jitter=.3 //通过抖动来防止过拟合,jitter就是crop的参数
ignore_thresh = .7 //参数解释:ignore_thresh 指得是参与计算的IOU阈值大小。当预测的检测框与ground true的IOU大于ignore_thresh的时候,参与loss的计算,否则,检测框的不参与损失计算。
参数目的和理解:目的是控制参与loss计算的检测框的规模,当ignore_thresh过于大,接近于1的时候,那么参与检测框回归loss的个数就会比较少,同时也容易造成过拟合;而如果ignore_thresh设置的过于小,那么参与计算的会数量规模就会很大。同时也容易在进行检测框回归的时候造成欠拟合。
参数设置:一般选取0.5-0.7之间的一个值,之前的计算基础都是小尺度(13*13)用的是0.7,(26*26)用的是0.5。这次先将0.5更改为0.7。
实验结果:AP=0.5121(有明显下降)
truth_thresh = 1 //默认
random=1 //每隔几次迭代后就会微调网络的输入尺寸,如果为1,每次迭代图片大小随机从320到608,步长为32,如果为0,每次训练大小与输入大小一致
[route]
layers = -4
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[upsample]
stride=2
[route]
layers = -1, 61
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=18#255
activation=linear
[yolo]
mask = 3,4,5
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=1
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
[route]
layers = -4
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[upsample]
stride=2
[route]
layers = -1, 36
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=18#255 3*(4+1+1)
activation=linear
[yolo]
mask = 0,1,2
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 //anchors是可以事先通过cmd指令计算出来的,是和图片数量,width,height以及cluster(应该就是下面的num的值,
//即想要使用的anchors的数量)相关的预选框,可以手工挑选,也可以通过k means 从训练样本中学出
classes=1
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
训练答疑
训练一次迭代的log 图1
| 如果你看到avg loss =nan 说明训练错误; 某一行的Class=-nan说明目标太大或者太小,某个尺度检测不到,属于正常 | |
|---|---|
| 什么时候应该停止训练? | 当loss不在下降或者下降极慢的情况可以停止训练,一般loss=0.7左右就可以了 |
| 在训练集上测试正确率很高,在其他测试集上测试效果很差,说明过拟合了。 | 提前停止训练,或者增大样本数量训练 |
| 如何提高目标检测正确率包括IOU,分类正确率 |
设置yolo层 random =1,增加不同的分辨率。或者增大图片本身分辨率。或者根据你自定义的数据集去重新计算anchor尺寸(darknet.exe detector calc_anchors data/obj.data -num_of_clusters 9 -width 416 -height 416 then set the same 9 anchors in each of 3 [yolo]-layers in your cfg-file) |
| 如何增加训练样本? |
样本特点尽量多样化,亮度,旋转,背景,目标位置,尺寸 添加没有标注框的图片和其空的txt文件,作为negative数据 |
| 训练的图片较小,但是实际检测图片大,怎么检测小目标 |
1.使在用416*416训练完之后,也可以在cfg文件中设置较大的width和height,增加网络对图像的分辨率,从而更可能检测出图像中的小目标,而不需要重新训练 2. set `[route] layers = -1, 11` set ` [upsample] stride=4` |
|
网络模型耗费资源多大? (我用过就两个) |
[yolov3.cfg] [236MB COCO-91类] [4GB GPU-RAM] [yolov3.cfg] [194MB VOC-20类] [4GB GPU-RAM] [yolov3-tiny.cfg] [34MB COCO-91类] [1GB GPU-RAM] [yolov3-tiny.cfg] [26MB VOC-20类] [1GB GPU-RAM] |
| 多GPU怎么训练 |
darknet.exe detector train data/voc.data cfg/yolov3-voc.cfg /backup/yolov3-voc_1000.weights -gpus 0,1,2,3 |
| 有哪些命令行来对神经网络进行训练和测试? |
1.检测图片: build\darknet\x64\darknet.exe detector test data/coco.data cfg/yolov3.cfg yolov3.weights -thresh 0.25 xxx.jpg 2.检测视频:将test 改为 demo ; xxx.jpg 改为xxx.mp4 3.调用网络摄像头:将xxx.mp4 改为 http://192.168.0.80:8080/video?dummy=x.mjpg -i 0 4.批量检测:-dont_show -ext_output < data/train.txt > result.txt 5.手持端网络摄像头:下载mjpeg-stream 软件, xxx.jpg 改为 IP Webcam / Smart WebCam |
| 如何评价模型好坏 |
build\darknet\x64\darknet.exe detector map data\defect.data cfg\yolov3.cfg backup\yolov3.weights 利用上面命令计算各权重文件,选择具有最高IoU(联合的交集)和mAP(平均精度)的权重文件 |
Yolov3参数解释以及答疑的更多相关文章
- http load 的使用以及参数解释
http load 的使用以及参数解释 1.参数含义 参数 全称 含义 -p -parallel 并发的用户进程数.-f -fetches ...
- /etc/sysctl.conf参数解释
/etc/sysctl.conf参数解释: fs.file max = 999999 #表示进程(例如一个worker进程)可能同时打开的最大句柄数,直接限制最大并发连接数 net.ipv4.tcp_ ...
- lcd参数解释及刷新率计算,LCD时序
一.LCD显示图像的过程如下: 其中,VSYNC和HSYNC是有宽度的,加上后如下: 参数解释: HBP(Horizontal Back Porch)水平后沿:在每行或每列的象素数据开始输出时要插入的 ...
- angular-cli.json配置参数解释,以及依稀常用命令的通用关键参数解释
一. angular-cli.json常见配置 { "project": { "name": "ng-admin", //项目名称 &quo ...
- mysql命令行各个参数解释
mysql命令行各个参数解释 http://blog.51yip.com/mysql/1056.html Usage: mysql [OPTIONS] [database] //命令方式 -?, ...
- Wget用法、参数解释
wget功能的强大就不用多说了,在高手手里,它就像是个无往不利的杀人利器,下面是转载的一篇Wget用法.参数解释的比较好的一个文章,当然最好的老师还是man wget 是一个从网络上自动下载文件的自由 ...
- my.cnf 配置文件参数解释
my.cnf 配置文件参数解释: #*** client options 相关选项 ***# #以下选项会被MySQL客户端应用读取.注意只有MySQL附带的客户端应用程序保证可以读取这段内容.如果你 ...
- package.json和bower的参数解释
package.json和bower的参数解释 一.package.json解释: package.json是用来声明项目中使用的模块,这样新的环境部署时,只要在package.json文件所在的 ...
- tensorflow conv2d的padding解释以及参数解释
1.padding的方式: 说明: 1.摘录自http://stackoverflow.com/questions/37674306/what-is-the-difference-between-sa ...
随机推荐
- HashMap&线程
1.HashMap概念 HashMap是一个散列表,存储内容是键值对(key-value)的映射, HashMap继承了AbstractMap,实现了Map.Cloneable.java.io.Ser ...
- Nginx详解二十九:基于Nginx的中间件架构设计
基于Nginx的中间件架构 一:了解需求 1.定义Nginx在服务体系中的角色 1.静态资源服务 2.代理服务 3.动静分离 2.静态资源服务的功能设计 3.代理服务 二:设计评估 三:配置注意事项
- python字符编码和文件处理
一.了解字符编码的知识储备 1.文本编辑器存取文件的原理(nodepad++,python,word) 打开编辑器就打开了启动了一个进程,是在内存中的,所以,用编辑器编写的内容也都是存放于内存中的,断 ...
- spring cloud 路由网关zuul基本使用
在微服务架构中,需要几个关键的组件,服务注册与发现.服务消费.负载均衡.断路器.智能路由.配置管理等,由这几个组件可以组建一个简单的微服务架构.客户端的请求首先经过负载均衡(zuul.Ngnix),再 ...
- asp.net core 图片验证码,后台验证
验证方法: public static string VerificationCodeCacheFormat="vcode_cache_{0}"; public IActionRe ...
- C# 位移运算
一:“<<”和“>>”运算符用于执行移位运算,分别称为左移位运算符和右移位运算符.对于X<<N和X>>N形式的运算,含义是将X向左或向右移动N位,得到的 ...
- SqlServerHelp
using System; using System.Collections.Generic; using System.Reflection; using System.Text; using Sy ...
- C#学习-const和readonly
const是表示为常量的关键字,一旦赋值就不能改变了.是程序编译时候CLR就将const的值编译到IL代码中了. readonly也是常量的关键的字: 所以,有了这两个关键字的比较.readonly肯 ...
- Spring MVC基础知识整理➣拦截器和自定义注解
概述 Spring MVC中通过注解来对方法或者类进行动态的说明或者标注,类似于配置标识文件的属性信息.当标注的类或者方式被使用时候,通过提取注解信息来达到对类的动态处理.在 MVC中,我们常用的注解 ...
- C语言之字符、整数、数组、字符串笔记
菜单导航 1.变量在计算中的内存分配 2.字符char类型操作 3.整型数据类型操作 4.数组操作和元素地址分配分析 5.数组越界造成的访问不属于自己的内存空间现象 6.引用数据类型和基本数据类型,形 ...
