Luogu P2568 GCD
我们首先发现这样肯定是做不了的,所以我们枚举为\(gcd(x,y)=d\)的\(d\)
然后考虑以下的性质:
\(gcd(x,y)=1 \Leftrightarrow gcd(px,py)=p(p为素数)\)
这个很显然吧,因此当我们枚举素数\(d\)时只需要计算\(x,y\in[1,\lfloor\frac{n}{d}\rfloor]\)且\(gcd(x,y)=1\)的有序\(x,y\)对数即可。
我们假定\(x<=y\),那么很容易结合欧拉函数的性质得出此时对答案的贡献为\(2\cdot\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\phi(i)-1\)
这个比较显然吧,假定\(i\in[1,\lfloor\frac{n}{d}\rfloor]\)为较大的那个,所以无序的对数就是\(\phi(i)\),由于有序所以乘2。最后注意一下\((1,1)\)会被计算两次要减去。
最后给欧拉函数记一个前缀和即可。
CODE
#include<cstdio>
#define RI register int
using namespace std;
const int P=1e7;
int prime[P+5],phi[P+5],cnt,n; long long ans,sum[P+5]; bool vis[P+5];
inline void resolve(int x)
{
vis[1]=phi[1]=1; sum[1]=2; for (RI i=2;i<=n;++i)
{
if (!vis[i]) prime[++cnt]=i,phi[i]=i-1;
for (RI j=1;j<=cnt&&i*prime[j]<=n;++j)
{
vis[i*prime[j]]=1; if (i%prime[j]) phi[i*prime[j]]=phi[i]*(prime[j]-1);
else { phi[i*prime[j]]=phi[i]*prime[j]; break; }
}
sum[i]=sum[i-1]+(phi[i]<<1);
}
}
int main()
{
RI i; scanf("%d",&n); for (resolve(n),i=1;i<=cnt;++i)
ans+=sum[n/prime[i]]-1; return printf("%lld",ans),0;
}
Luogu P2568 GCD的更多相关文章
- 「Luogu P2568 GCD」
看到这是一道紫题还是和gcd有关的才点进来(毕竟数论只会gcd). 前置芝士 质数**(又称素数):因数只有1和本身,但是很特殊的1不是一个质数. gcd**:欧几里得算法,又称辗转相除法,可以在约为 ...
- 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)
P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...
- 洛谷 P2568 GCD
https://www.luogu.org/problemnew/show/P2568#sub 最喜欢题面简洁的题目了. 本题为求两个数的gcd是素数,那么我们将x和y拆一下, 假设p为$gcd(x, ...
- 洛谷 - P2568 - GCD - 欧拉函数
https://www.luogu.org/problemnew/show/P2568 统计n以内gcd为质数的数的个数. 求 \(\sum\limits_p \sum\limits_{i=1}^{n ...
- [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)
题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...
- 洛谷P2568 GCD(线性筛法)
题目链接:传送门 题目: 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 ...
- [洛谷P2568]GCD
题目大意:给你$n(1\leqslant n\leqslant 10^7)$,求$\displaystyle\sum\limits_{x=1}^n\displaystyle\sum\limits_{y ...
- P2568 GCD
\(\color{#0066ff}{ 题目描述 }\) 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. \(\color{#0066ff}{输入格式}\ ...
- [luogu 2568] GCD (欧拉函数)
题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入样例#1: 4 输出样例#1: 4 ...
随机推荐
- selenium 之百度搜索,结果列表翻页查询
selenium之百度搜索,结果列表翻页查询 by:授客 QQ:1033553122 实例:百度搜索,结果列表翻页查询 解决问题:解决selenium driver获取web页面元素时,元素过期问题 ...
- angularjs的$http请求方式
/*$http常用的几个参数 $http服务的设置对象: 1.method 字符串 表示发送的请求类型 get post jsonp等等 2.url 字符串 绝对或者相对的URL,请求的目标 3.pa ...
- beta冲刺随笔集
团队成员 郑西坤 031602542 (队长) 陈俊杰 031602504 陈顺兴 031602505 张胜男 031602540 廖钰萍 031602323 雷光游 031602319 吴志鸿 03 ...
- Wim镜像编辑
1.挂载install.wim文件为本地的一个文件夹 dism /mount-wim /wimfile:D:\install.wim /index:1 /mountdir:D:\Win 注:1> ...
- [20180626]函数与标量子查询14.txt
[20180626]函数与标量子查询14.txt --//前面看http://www.cnblogs.com/kerrycode/p/9099507.html链接,里面提到: 通俗来将,当使用标量子查 ...
- [20171106]修改show spparameter的显示宽度.txt
[20171106]修改show spparameter的显示宽度.txt --//很多年前做的,修改show parameter的显示宽度.--//链接: [20121023]改变show para ...
- Deepin系统手动安装oracle jdk8详细教程
Deepin系统手动安装oracle jdk8详细教程 oracle官网下载jdk压缩包,使用 sudo tar -zxf jdk***解压文件,我放在在了home/diy/java/jdk路径下. ...
- 为什么MySQL数据库索引选择使用B+树?
在进一步分析为什么MySQL数据库索引选择使用B+树之前,我相信很多小伙伴对数据结构中的树还是有些许模糊的,因此我们由浅入深一步步探讨树的演进过程,在一步步引出B树以及为什么MySQL数据库索引选择使 ...
- tomcat健康检查监控脚本
#!/bin/sh#自动监控tomcat脚本并且执行重启操作#获取tomcat_IDTomcatID=`ps -ef|grep tomcat|grep -v "grep"|grep ...
- HDU3949 XOR
嘟嘟嘟 集训的时候发现自己不会线性基,就打算学一下. 这东西学了挺长时间,其实不是因为难,而是天天上午考试,下午讲题,结果晚上就开始颓了. 今天总算是有大块的时间好好学了一遍. 这里推荐menci大佬 ...