我们首先发现这样肯定是做不了的,所以我们枚举为\(gcd(x,y)=d\)的\(d\)

然后考虑以下的性质:

\(gcd(x,y)=1 \Leftrightarrow gcd(px,py)=p(p为素数)\)

这个很显然吧,因此当我们枚举素数\(d\)时只需要计算\(x,y\in[1,\lfloor\frac{n}{d}\rfloor]\)且\(gcd(x,y)=1\)的有序\(x,y\)对数即可。

我们假定\(x<=y\),那么很容易结合欧拉函数的性质得出此时对答案的贡献为\(2\cdot\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\phi(i)-1\)

这个比较显然吧,假定\(i\in[1,\lfloor\frac{n}{d}\rfloor]\)为较大的那个,所以无序的对数就是\(\phi(i)\),由于有序所以乘2。最后注意一下\((1,1)\)会被计算两次要减去。

最后给欧拉函数记一个前缀和即可。

CODE

#include<cstdio>
#define RI register int
using namespace std;
const int P=1e7;
int prime[P+5],phi[P+5],cnt,n; long long ans,sum[P+5]; bool vis[P+5];
inline void resolve(int x)
{
vis[1]=phi[1]=1; sum[1]=2; for (RI i=2;i<=n;++i)
{
if (!vis[i]) prime[++cnt]=i,phi[i]=i-1;
for (RI j=1;j<=cnt&&i*prime[j]<=n;++j)
{
vis[i*prime[j]]=1; if (i%prime[j]) phi[i*prime[j]]=phi[i]*(prime[j]-1);
else { phi[i*prime[j]]=phi[i]*prime[j]; break; }
}
sum[i]=sum[i-1]+(phi[i]<<1);
}
}
int main()
{
RI i; scanf("%d",&n); for (resolve(n),i=1;i<=cnt;++i)
ans+=sum[n/prime[i]]-1; return printf("%lld",ans),0;
}

Luogu P2568 GCD的更多相关文章

  1. 「Luogu P2568 GCD」

    看到这是一道紫题还是和gcd有关的才点进来(毕竟数论只会gcd). 前置芝士 质数**(又称素数):因数只有1和本身,但是很特殊的1不是一个质数. gcd**:欧几里得算法,又称辗转相除法,可以在约为 ...

  2. 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)

    P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...

  3. 洛谷 P2568 GCD

    https://www.luogu.org/problemnew/show/P2568#sub 最喜欢题面简洁的题目了. 本题为求两个数的gcd是素数,那么我们将x和y拆一下, 假设p为$gcd(x, ...

  4. 洛谷 - P2568 - GCD - 欧拉函数

    https://www.luogu.org/problemnew/show/P2568 统计n以内gcd为质数的数的个数. 求 \(\sum\limits_p \sum\limits_{i=1}^{n ...

  5. [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)

    题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算​$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...

  6. 洛谷P2568 GCD(线性筛法)

    题目链接:传送门 题目: 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 ...

  7. [洛谷P2568]GCD

    题目大意:给你$n(1\leqslant n\leqslant 10^7)$,求$\displaystyle\sum\limits_{x=1}^n\displaystyle\sum\limits_{y ...

  8. P2568 GCD

    \(\color{#0066ff}{ 题目描述 }\) 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. \(\color{#0066ff}{输入格式}\ ...

  9. [luogu 2568] GCD (欧拉函数)

    题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入样例#1: 4 输出样例#1: 4 ...

随机推荐

  1. selenium 之百度搜索,结果列表翻页查询

    selenium之百度搜索,结果列表翻页查询 by:授客 QQ:1033553122 实例:百度搜索,结果列表翻页查询 解决问题:解决selenium driver获取web页面元素时,元素过期问题 ...

  2. angularjs的$http请求方式

    /*$http常用的几个参数 $http服务的设置对象: 1.method 字符串 表示发送的请求类型 get post jsonp等等 2.url 字符串 绝对或者相对的URL,请求的目标 3.pa ...

  3. beta冲刺随笔集

    团队成员 郑西坤 031602542 (队长) 陈俊杰 031602504 陈顺兴 031602505 张胜男 031602540 廖钰萍 031602323 雷光游 031602319 吴志鸿 03 ...

  4. Wim镜像编辑

    1.挂载install.wim文件为本地的一个文件夹 dism /mount-wim  /wimfile:D:\install.wim /index:1 /mountdir:D:\Win 注:1> ...

  5. [20180626]函数与标量子查询14.txt

    [20180626]函数与标量子查询14.txt --//前面看http://www.cnblogs.com/kerrycode/p/9099507.html链接,里面提到: 通俗来将,当使用标量子查 ...

  6. [20171106]修改show spparameter的显示宽度.txt

    [20171106]修改show spparameter的显示宽度.txt --//很多年前做的,修改show parameter的显示宽度.--//链接: [20121023]改变show para ...

  7. Deepin系统手动安装oracle jdk8详细教程

    Deepin系统手动安装oracle jdk8详细教程 oracle官网下载jdk压缩包,使用 sudo tar -zxf jdk***解压文件,我放在在了home/diy/java/jdk路径下. ...

  8. 为什么MySQL数据库索引选择使用B+树?

    在进一步分析为什么MySQL数据库索引选择使用B+树之前,我相信很多小伙伴对数据结构中的树还是有些许模糊的,因此我们由浅入深一步步探讨树的演进过程,在一步步引出B树以及为什么MySQL数据库索引选择使 ...

  9. tomcat健康检查监控脚本

    #!/bin/sh#自动监控tomcat脚本并且执行重启操作#获取tomcat_IDTomcatID=`ps -ef|grep tomcat|grep -v "grep"|grep ...

  10. HDU3949 XOR

    嘟嘟嘟 集训的时候发现自己不会线性基,就打算学一下. 这东西学了挺长时间,其实不是因为难,而是天天上午考试,下午讲题,结果晚上就开始颓了. 今天总算是有大块的时间好好学了一遍. 这里推荐menci大佬 ...