我们首先发现这样肯定是做不了的,所以我们枚举为\(gcd(x,y)=d\)的\(d\)

然后考虑以下的性质:

\(gcd(x,y)=1 \Leftrightarrow gcd(px,py)=p(p为素数)\)

这个很显然吧,因此当我们枚举素数\(d\)时只需要计算\(x,y\in[1,\lfloor\frac{n}{d}\rfloor]\)且\(gcd(x,y)=1\)的有序\(x,y\)对数即可。

我们假定\(x<=y\),那么很容易结合欧拉函数的性质得出此时对答案的贡献为\(2\cdot\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\phi(i)-1\)

这个比较显然吧,假定\(i\in[1,\lfloor\frac{n}{d}\rfloor]\)为较大的那个,所以无序的对数就是\(\phi(i)\),由于有序所以乘2。最后注意一下\((1,1)\)会被计算两次要减去。

最后给欧拉函数记一个前缀和即可。

CODE

#include<cstdio>
#define RI register int
using namespace std;
const int P=1e7;
int prime[P+5],phi[P+5],cnt,n; long long ans,sum[P+5]; bool vis[P+5];
inline void resolve(int x)
{
vis[1]=phi[1]=1; sum[1]=2; for (RI i=2;i<=n;++i)
{
if (!vis[i]) prime[++cnt]=i,phi[i]=i-1;
for (RI j=1;j<=cnt&&i*prime[j]<=n;++j)
{
vis[i*prime[j]]=1; if (i%prime[j]) phi[i*prime[j]]=phi[i]*(prime[j]-1);
else { phi[i*prime[j]]=phi[i]*prime[j]; break; }
}
sum[i]=sum[i-1]+(phi[i]<<1);
}
}
int main()
{
RI i; scanf("%d",&n); for (resolve(n),i=1;i<=cnt;++i)
ans+=sum[n/prime[i]]-1; return printf("%lld",ans),0;
}

Luogu P2568 GCD的更多相关文章

  1. 「Luogu P2568 GCD」

    看到这是一道紫题还是和gcd有关的才点进来(毕竟数论只会gcd). 前置芝士 质数**(又称素数):因数只有1和本身,但是很特殊的1不是一个质数. gcd**:欧几里得算法,又称辗转相除法,可以在约为 ...

  2. 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)

    P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...

  3. 洛谷 P2568 GCD

    https://www.luogu.org/problemnew/show/P2568#sub 最喜欢题面简洁的题目了. 本题为求两个数的gcd是素数,那么我们将x和y拆一下, 假设p为$gcd(x, ...

  4. 洛谷 - P2568 - GCD - 欧拉函数

    https://www.luogu.org/problemnew/show/P2568 统计n以内gcd为质数的数的个数. 求 \(\sum\limits_p \sum\limits_{i=1}^{n ...

  5. [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)

    题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算​$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...

  6. 洛谷P2568 GCD(线性筛法)

    题目链接:传送门 题目: 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 ...

  7. [洛谷P2568]GCD

    题目大意:给你$n(1\leqslant n\leqslant 10^7)$,求$\displaystyle\sum\limits_{x=1}^n\displaystyle\sum\limits_{y ...

  8. P2568 GCD

    \(\color{#0066ff}{ 题目描述 }\) 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. \(\color{#0066ff}{输入格式}\ ...

  9. [luogu 2568] GCD (欧拉函数)

    题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入样例#1: 4 输出样例#1: 4 ...

随机推荐

  1. Windows中几个内存相当的指标

    以下几个内存大小相当: IS:虚拟内存任务管理器:提交内存进程对象上的:PrivateMemorySize64,性能计数器:Process\Private Bytes

  2. python与MongoDB的基本交互:pymongo

    本文内容: pymongo的使用: 安装模块 导入模块 连接mongod 获取\切换数据库 选择集合 CRUD操作 首发时间:2018-03-18 20:11 pymongo的使用: 安装模块: pi ...

  3. The stacking context

    文档中的层叠上下文由满足以下任意一个条件的元素形成: 1. z-index 值不为 "auto"的 绝对/相对定位. 2. position位fixed. 3. opacity 属 ...

  4. 大表分批删除脚本之MySQL版

    经常需要定期对某些表删除历史数据,通常这样的表的数据又是非常巨大,为了减轻对线上环境的影响,删除时必须分成小批量来进行. 以前分享过SQLServer的版本. 下面是MySQL版本: delimite ...

  5. 【HANA系列】SAP HANA XS使用Data Services查询CDS实体【一】

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[HANA系列]SAP HANA XS使用Dat ...

  6. Windows 10忘记登录密码不用怕,系统U盘/光盘轻松重置

    我们有时会遇到忘记Windows10登录密码,或者电脑被其他账户登录后不知道密码无法开机的情况.遇到这些问题后,我们可能会借助一些第三方工具来移除现有密码.然而这些工具本身的安全性还有待检验,肯定不如 ...

  7. Shell脚本应用(if语句的结构)

    1.测试:检测表达式是否成立,成立则返回值为0,否则为非0 方法: 1)test  表达式 2)[ 表达式 ] 2.文件测试: -d:是否为目录 -f:是否为文件 -e:是否存在 -r:是否有读取权限 ...

  8. January 11th, 2018 Week 02nd Thursday

    Live, travel, adventure, bless, and don't be sorry. 精彩地活着,不停地前行,大胆冒险,心怀感激,不留遗憾. Everything we do is ...

  9. 17秋 软件工程 第六次作业 Beta冲刺 Scrum1

    17秋 软件工程 第六次作业 Beta冲刺 Scrum1 各个成员冲刺期间完成的任务 重新梳理项目架构与当前进展,并且对我们的Alpha版本项目进行完整测试,将测试过程中发现的问题列入Github i ...

  10. 17秋 软件工程 第六次作业 Beta冲刺 Scrum4

    17秋 软件工程 第六次作业 Beta冲刺 Scrum4 各个成员冲刺期间完成的任务 世强:完成APP用户签到模块.群发短信模块前端界面: 陈翔:恢复Github项目,完成Scrum博客: 树民:和超 ...