B. Polygons
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You've got another geometrical task. You are given two non-degenerate polygons A and B as vertex coordinates. Polygon A is strictly convex. Polygon B is an arbitrary polygon without any self-intersections and self-touches. The vertices of both polygons are given in the clockwise order. For each polygon no three consecutively following vertices are located on the same straight line.

Your task is to check whether polygon B is positioned strictly inside polygon A. It means that any point of polygon B should be strictly inside polygon A. "Strictly" means that the vertex of polygon B cannot lie on the side of the polygon A.

Input

The first line contains the only integer n (3 ≤ n ≤ 105) — the number of vertices of polygon A. Then n lines contain pairs of integers xi, yi (|xi|, |yi| ≤ 109) — coordinates of the i-th vertex of polygon A. The vertices are given in the clockwise order.

The next line contains a single integer m (3 ≤ m ≤ 2·104) — the number of vertices of polygon B. Then following m lines contain pairs of integers xj, yj (|xj|, |yj| ≤ 109) — the coordinates of the j-th vertex of polygon B. The vertices are given in the clockwise order.

The coordinates of the polygon's vertices are separated by a single space. It is guaranteed that polygons A and B are non-degenerate, that polygon A is strictly convex, that polygon B has no self-intersections and self-touches and also for each polygon no three consecutively following vertices are located on the same straight line.

Output

Print on the only line the answer to the problem — if polygon B is strictly inside polygon A, print "YES", otherwise print "NO" (without the quotes).

Examples
input
6
-2 1
0 3
3 3
4 1
3 -2
2 -2
4
0 1
2 2
3 1
1 0
output
YES
input
5
1 2
4 2
3 -3
-2 -2
-2 1
4
0 1
1 2
4 1
2 -1
output
NO
input
5
-1 2
2 3
4 1
3 -2
0 -3
5
1 0
1 1
3 1
5 -1
2 -1
output
NO

题意:给你两个多边形A,B,已知A为凸多边形,问B是否全部在A内(严格);

思路:将所有点合并,查找凸包,求是否B上的点都不在凸包上;

   因为有一个严格的要求,对于扫描法的凸包,不一定可以找到相同斜率的点;

   对于Andrew求凸包 ,只删除一些点,使得形成凸包;

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<bitset>
#include<set>
#include<map>
#include<time.h>
using namespace std;
#define LL long long #define bug(x) cout<<"bug"<<x<<endl;
const int N=2e5+,M=1e6+,inf=1e9+;
const LL INF=1e18+,mod=1e9+;
const double eps=(1e-),pi=(*atan(1.0)); int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < )return -;
else return ;
}
struct Point
{
double x,y;
Point() {}
Point(double _x,double _y)
{
x = _x;
y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
//叉积
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
//点积
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
//绕原点旋转角度B(弧度值),后x,y的变化
void transXY(double B)
{
double tx = x,ty = y;
x= tx*cos(B) - ty*sin(B);
y= tx*sin(B) + ty*cos(B);
}
bool operator <(const Point p)const
{
if(x!=p.x)
return x<p.x;
return y<p.y;
}
};
struct Line
{
Point s,e;
Line() {}
Line(Point _s,Point _e)
{
s = _s;
e = _e;
}
//两直线相交求交点 //第一个值为0表示直线重合,为1表示平行,为0表示相交,为2是相交 //只有第一个值为2时,交点才有意义
pair<int,Point> operator &(const Line &b)const
{
Point res = s;
if(sgn((s-e)^(b.s-b.e)) == )
{
if(sgn((s-b.e)^(b.s-b.e)) == ) return make_pair(,res);//重合
else return make_pair(,res);//平行
}
double t = ((s-b.s)^(b.s-b.e))/((s-e)^(b.s-b.e));
res.x += (e.x-s.x)*t;
res.y += (e.y-s.y)*t;
return make_pair(,res);
}
}; double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
}
const int MAXN = ;
Point listt[MAXN];
int Stack[MAXN],top; int convexhull(int n) /*建立凸包*/
{
sort(listt,listt+n);
int m=;
for(int i=; i<n; i++) {
while(m> && sgn((listt[Stack[m-]]-listt[Stack[m-]])^(listt[i]-listt[Stack[m-]]))<)
m--;
Stack[m++]=i;
}
int k=m;
for(int i=n-; i>=; i--) {
while(m>k && sgn((listt[Stack[m-]]-listt[Stack[m-]])^(listt[i]-listt[Stack[m-]]))<)
m--;
Stack[m++]=i;
}
if(n>) m--;
return m;
}
set<Point>s;
int n,m;
int FIND()
{
//for(int i=0;i<top;i++)
//cout<<listt[Stack[i]].x<<" "<<listt[Stack[i]].y<<endl;
for(int i=;i<top;i++)
if(s.find(listt[Stack[i]])!=s.end())return ;
return ;
}
int main()
{
scanf("%d",&n);
for(int i=;i<n;i++)
{
double x,y;
scanf("%lf%lf",&x,&y);
listt[i]=Point(x,y);
}
scanf("%d",&m);
for(int i=;i<m;i++)
{
double x,y;
scanf("%lf%lf",&x,&y);
listt[i+n]=Point(x,y);
s.insert(listt[i+n]);
}
top=convexhull(n+m);if(FIND())printf("NO\n");
else printf("YES\n");
return ;
}

Codeforces Round #113 (Div. 2) B. Polygons Andrew求凸包的更多相关文章

  1. Codeforces Round #113 (Div. 2)

    Codeforces Round #113 (Div. 2) B. Polygons 题意 给一个\(N(N \le 10^5)\)个点的凸包 \(M(M \le 2 \cdot 10^4)\)次询问 ...

  2. Tetrahedron(Codeforces Round #113 (Div. 2) + 打表找规律 + dp计数)

    题目链接: https://codeforces.com/contest/166/problem/E 题目: 题意: 给你一个三菱锥,初始时你在D点,然后你每次可以往相邻的顶点移动,问你第n步回到D点 ...

  3. Codeforces Round #113 (Div. 2) Tetrahedron(滚动DP)

    Tetrahedron time limit per test 2 seconds memory limit per test 256 megabytes input standard input o ...

  4. Codeforces Round #549 (Div. 2) F 数形结合 + 凸包(新坑)

    https://codeforces.com/contest/1143/problem/F 题意 有n条形如\(y=x^2+bx+c\)的抛物线,问有多少条抛物线上方没有其他抛物线的交点 题解 \(y ...

  5. C. Edgy Trees Codeforces Round #548 (Div. 2) 并查集求连通块

    C. Edgy Trees time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  6. Codeforces Round #364 (Div. 2) C 二分处理+求区间不同字符的个数 尺取法

    C. They Are Everywhere time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  7. Codeforces Round #467 (Div. 2) B. Vile Grasshoppers[求去掉2-y中所有2-p的数的倍数后剩下的最大值]

    B. Vile Grasshoppers time limit per test 1 second memory limit per test 256 megabytes input standard ...

  8. Codeforces Round #620 (Div. 2)E(LCA求树上两点最短距离)

    LCA求树上两点最短距离,如果a,b之间距离小于等于k并且奇偶性与k相同显然YES:或者可以从a先走到x再走到y再走到b,并且a,x之间距离加b,y之间距离+1小于等于k并且奇偶性与k相同也输出YES ...

  9. Codeforces Round #532 (Div. 2) 题解

    Codeforces Round #532 (Div. 2) 题目总链接:https://codeforces.com/contest/1100 A. Roman and Browser 题意: 给出 ...

随机推荐

  1. easyui combobox 去空格事件 去掉,结果输入空格体验不畅的感觉,让combobox能够输入空格

    $("[comboname=name]").next("span").find("input.textbox-text").unbind(& ...

  2. 求最短路的三种方法:dijkstra,spfa,floyd

    dijkstra是一种单源最短路算法.在没有负权值的图上,vi..vj..vk是vi到vk最短路的话,一定要走vi到vj的最短路.所以每次取出到起点距离最小的点,从该点出发更新邻接的点的距离,如果更新 ...

  3. java 中重写toString()方法

    toString()方法 一般出现在System.out.println(类名.toString()); toString()是一种自我描述方法 本身返回的是 getClass().getName() ...

  4. [01-01]oracle数据库汉化

    oracle汉化方法: 1.下载oracle工具,下载与自己电脑版本相关的oracle工具,可在电脑 [控制面板] - [系统和安全] - [系统] 查看电脑版本 32位或64位,oracle工具下载 ...

  5. 常用oracle hints

    在SQL语句优化过程中,经常会用到hint, 以下是在SQL优化过程中常见Oracle中"HINT"的30个用法 1. /*+ALL_ROWS*/ 表明对语句块选择基于开销的优化方 ...

  6. PTA最短工期

    一个项目由若干个任务组成,任务之间有先后依赖顺序.项目经理需要设置一系列里程碑,在每个里程碑节点处检查任务的完成情况,并启动后续的任务.现给定一个项目中各个任务之间的关系,请你计算出这个项目的最早完工 ...

  7. EXT的bug 布局border 和 grid的cellediting

    首先 我要的布局是上下两块,并且高度和按自己的喜欢可调节,所以我采用的是border的布局, 上下两块,都放grid列表,上面一块不可编辑,下面这块可编辑,如图 在编辑第二块的时候会出现这个现象 图一 ...

  8. DOS的重定向命令及在安全方面的应用

    dos的重定向命令 2006-10-15 16:47 新手DOS应用技巧人小鬼大 重定向命令在安全方面的应用来源:ChinaITLab收集整理2005-7-21 11:12:00 大家知道,DOS下有 ...

  9. Golang--不定参数类型

    1.不定参数类型 不定参数是指函数传入的参数个数为不定数量. package main import ( "fmt" ) //不定参数函数 func Add(a int, args ...

  10. ionic 需要注意的知识点