思路

考虑对ln求导后处理

根据复合函数的求导法则\(g'(f(x))=g'(x)f'(x)\)

得到

\[\ln F(x) '= \frac{F'(x)}{F(x)}
\]

最后对这个式子积分

\[\ln F(x) = \int {\frac{F'(x)}{F(x)}}
\]

代码

// luogu-judger-enable-o2
#include <cstdio>
#include <cstring>
#include <algorithm>
#define int long long
using namespace std;
const int MAXN = 300000;
const int G = 3;
const int invG = 332748118;
const int MOD = 998244353;
int n;
struct Poly{
int t;//次数界
int data[MAXN];
Poly(){}
Poly(int x,int val[]){
for(int i=0;i<=x;i++)
data[i]=val[i];
}
};
int pow(int a,int b){
int ans=1;
while(b){
if(b&1)
ans=(1LL*ans*a)%MOD;
a=(1LL*a*a)%MOD;
b>>=1;
}
return ans;
}
void rever(Poly &a){
for(int i=0,j=a.t;i<j;i++,j--){
swap(a.data[i],a.data[j]);
}
}
void save(Poly &a,int top){
for(int i=top+1;i<=a.t;i++)
a.data[i]=0;
a.t=top;
}
void qd(Poly &a){
for(int i=0;i<a.t;i++)
a.data[i]=(i+1)*a.data[i+1]%MOD;
a.data[a.t]=0;
a.t=a.t-1;
}
void jf(Poly &a){
for(int i=a.t+1;i>=1;i--)
a.data[i]=a.data[i-1]*pow(i,MOD-2)%MOD;
a.data[0]=0;
a.t++;
}
void output(Poly a){
putchar('\n');
printf("a.times=%lld\n",a.t);
putchar('\n');
for(int i=0;i<=a.t;i++)
printf("%lld ",a.data[i]);
putchar('\n');
putchar('\n');
}
void NTT(Poly &a,int opt,int n){//1 DFT 0 IDFT
int lim=0;
while((1<<(lim))<n)
lim++;
n=(1<<lim);
for(int i=0;i<n;i++){
int t=0;
for(int j=0;j<lim;j++)
if((i>>j)&1)
t|=(1<<(lim-j-1));
if(i<t)
swap(a.data[i],a.data[t]);
}
for(int i=2;i<=n;i<<=1){
int len=i/2;
int tmp=pow((opt)?G:invG,(MOD-1)/i);
for(int j=0;j<n;j+=i){
int arr=1;
for(int k=j;k<j+len;k++){
int t=(1LL*a.data[k+len]*arr)%MOD;
a.data[k+len]=(a.data[k]-t+MOD)%MOD;
a.data[k]=(a.data[k]+t)%MOD;
arr=(1LL*arr*tmp)%MOD;
}
}
}
if(!opt){
int invN = pow(n,MOD-2);
for(int i=0;i<n;i++){
a.data[i]=(a.data[i]*invN)%MOD;
}
}
}
void mul(Poly &a,Poly b){//a=a*b
int num=(a.t+b.t),lim=0;
while((1<<(lim))<=((num+2)))
lim++;
lim=(1<<lim);
NTT(a,1,lim);
NTT(b,1,lim);
for(int i=0;i<lim;i++)
a.data[i]=(1LL*a.data[i]*b.data[i])%MOD;
NTT(a,0,lim);
a.t=num;
for(int i=num+1;i<lim;i++)
a.data[i]=0;
}
void Inv(Poly a,Poly &inv,int dep,int &len){//
if(dep==1){
inv.data[0]=pow(a.data[0],MOD-2);
inv.t=dep-1;
return;
}
Inv(a,inv,(dep+1)>>1,len);
static Poly tmp1,tmp2,tmp;
while((dep<<1)>len)
len<<=1;
for(int i=0;i<dep;i++)
tmp.data[i]=a.data[i];
for(int i=dep;i<len;i++)
tmp.data[i]=0;
NTT(tmp,1,len);
NTT(inv,1,len);
for(int i=0;i<len;i++)
inv.data[i]=1LL*inv.data[i]*((2-1LL*inv.data[i]*tmp.data[i])%MOD+MOD)%MOD;
NTT(inv,0,len);
for(int i=dep;i<len;i++)
inv.data[i]=0;
inv.t=dep-1;
}
void div(Poly a,Poly b,Poly &D,Poly &R){
static Poly tmp1,tmp2;
int Up=a.t-b.t+1,midlen=1;
tmp1=b;
rever(tmp1);
Inv(tmp1,tmp2,Up,midlen);
tmp1=a;
rever(tmp1);
mul(tmp2,tmp1);
save(tmp2,a.t-b.t);
rever(tmp2);
D=tmp2;
mul(tmp2,b);
for(int i=0;i<b.t;i++)
R.data[i]=(a.data[i]-tmp2.data[i]+MOD)%MOD;
R.t=b.t-1;
}
void sqrt(Poly a,Poly &b,int &midlen,int dep){
// printf("dep=%lld\n",dep);
if(dep==1){
b.data[0]=1;
b.t=dep-1;
return;
}
sqrt(a,b,midlen,(dep+1)>>1);
// printf("dep=%lld\n",dep);
while((dep<<1)>(midlen))
midlen<<=1;
static Poly tmp1,tmp2,tmp3;
tmp1=b;tmp3=b;
save(tmp1,dep-1);
save(tmp3,dep-1);
save(tmp2,-1);
int midlent=1;
for(int i=0;i<dep;i++)
tmp1.data[i]=(tmp1.data[i]*2)%MOD;
Inv(tmp1,tmp2,dep,midlent);
mul(b,tmp3);
for(int i=0;i<dep;i++)
b.data[i]=(b.data[i]+a.data[i])%MOD;
mul(b,tmp2);
for(int i=dep;i<midlen;i++)
b.data[i]=0;
b.t=dep-1;
// output(b);
}
void ln(Poly a,Poly &b,int n){
static Poly tmp1;
int midlent=1;
Inv(a,tmp1,n,midlent);
b=a;
qd(b);
mul(b,tmp1);
jf(b);
save(b,n-1);
}
Poly a,b;
signed main(){
scanf("%lld",&n);
for(int i=0;i<n;i++)
scanf("%lld",&a.data[i]);
a.t=n-1;
ln(a,b,n);
for(int i=0;i<=b.t;i++)
printf("%lld ",b.data[i]);
putchar('\n');
return 0;
}

P4725 【模板】多项式对数函数的更多相关文章

  1. luogu P4725 多项式对数函数(多项式 ln)

    LINK:多项式对数函数 多项式 ln 如题 是一个模板题.刚学会导数 几个知识点 \([f(x)\cdot g(x)]'=f(x)'g(x)+f(x)g(x)',f(g(x))'=f'(g(x))g ...

  2. luogu P4725 多项式对数函数 (模板题、FFT、多项式求逆、求导和积分)

    手动博客搬家: 本文发表于20181125 13:25:03, 原地址https://blog.csdn.net/suncongbo/article/details/84487306 题目链接: ht ...

  3. [洛谷P4725]【模板】多项式对数函数

    题目大意:给出$n-1$次多项式$A(x)$,求一个 $\bmod{x^n}$下的多项式$B(x)$,满足$B(x) \equiv \ln A(x)$.在$\bmod{998244353}$下进行.保 ...

  4. 洛谷P4725 【模板】多项式对数函数(多项式运算)

    传送门 前置芝士:微积分(有所了解即可)(可以看看这篇,写得非常详细我看了两章就看不下去了) 以下都是一些简单的教程切莫当真,仅供理解,建议看更严谨的 导数:对于一个函数$f(x)$,它的导数$f'( ...

  5. 洛谷P4725 【模板】多项式对数函数(多项式ln)

    题意 题目链接 Sol 这个不用背XD 前置知识: \(f(x) = ln(x), f'(x) = \frac{1}{x}\) \(f(g(x)) = f'(g(x)) g'(x)\) 我们要求的是\ ...

  6. Luogu 4725 【模板】多项式对数函数

    继续补全模板. 要求 $$g(x) = ln f(x)$$ 两边求导, $$g'(x) = \frac{f'(x)}{f(x)}$$ 然后左转去把多项式求导和多项式求逆的模板复制过来,就可以计算出$g ...

  7. luogu P4726 多项式指数函数(模板题FFT、多项式求逆、多项式对数函数)

    手动博客搬家: 本文发表于20181127 08:39:42, 原地址https://blog.csdn.net/suncongbo/article/details/84559818 题目链接: ht ...

  8. Luogu4725 【模板】多项式对数函数(NTT+多项式求逆)

    https://www.cnblogs.com/HocRiser/p/8207295.html 安利! #include<iostream> #include<cstdio> ...

  9. luogu 4725 【模板】多项式对数函数(多项式 ln)

    $G(x)=ln(A(x))$ $G'(x)=ln'(A(x))A'(x)=\frac{A'(x)}{A(x)}$     由于求导和积分是互逆的,所以对 $G$ 求积分,即 $G(x)=\int\f ...

随机推荐

  1. java 中的 Comparable 和 Comparator 与 Iterable 和 Iterator

    Comparable 和 Comparator Comparable 和 Comparator 是两个关系不大的类,其分别侧重于不同的方面. 其中,接口 Comparable<T> 强行对 ...

  2. SecureCRT操作指令

    连接服务器,文件——连接SFTP会话,然后可以help查看命令 传输文件需要明确并处在客户端和服务器端两个正确路径下, 服务器端的操作: cd——去服务器指定的路径 pwd——查看服务器端当前目录 l ...

  3. TX2-入门坑点-Ubuntu16.04任务栏消失

    问题:安装cuda过程中出现任务栏消失,快捷键失效的现象. 解决方法:重装桌面无法解决,使用cssm无法解决,最后删除home目录下的 .cache文件夹重启后解决

  4. eclipse与hadoop-eclipse-plugin之间的版本对应关系

    eclipse与hadoop-eclipse-plugin之间,版本互相不兼容,或者说,版本要求严格. 把hadoop-eclipse-plugin复制到eclipse的plugins目录下以后,如果 ...

  5. 【WordCount】实现(重做)

    Gitee项目地址: https://gitee.com/LIUJIA6/wordcount_implementation 需求说明: WordCount的需求可以概括为:对程序设计语言源文件统计字符 ...

  6. AnyConnect无法与指定的安全网关建立连接(转)

    原文:https://www.cnblogs.com/dumuqiao/p/4020547.html Cisco的VPN客户端最近报“AnyConnect was not able to establ ...

  7. 012-docker-安装-fabric:1.4

    一.准备工作 linux 版本.docker.docker-compose go安装且版本较新 uname -a docker --version docker-compose --version g ...

  8. cds view 创建和调用

    cds view 是一个core data service, 能够将数据库表虚拟化为一个虚拟表(double).因为各个使用sap的公司,使用的数据库数据是不同的,所以提供一个数据库的虚拟.  通过向 ...

  9. 2018-2019-1 20189203《linux内核原理与分析》第六周作业

    第一部分 给Menu OS增加命令 输入命令 rm -rf menu git clone http://github.com/mengning/menu.git make rootfs 查看增加的ti ...

  10. 编译器将"+"转换成了StringBuilder类

    MapReduce map100% Reduce 66% 卡死 如果你碰到map100%,reduce 66% 然后程序就貌似停止在这里了,可能是由于在Reduce类里使用了String造成的 根据一 ...