这种构造二次函数的方法最早接触的应该是在证明柯西不等式时:

再举一例:

最后再举个反向不等式的例子:

评:此类题目的证明是如何想到的呢?他们都有一个明显的特征$AB\ge(\le)C^2$,此时构造二次函数利用$\Delta$证明,效果非常理想.

MT【39】构造二次函数证明的更多相关文章

  1. MT【219】构造二次函数

    (2012北大保送)已知$f(x)$是二次函数,且$a,f(a),f(f(a)),f(f(f(a)))$是正项等比数列;求证:$f(a)=a$ 构造二次函数$f(x)=qx$,则$a,f(a),f(f ...

  2. MT【114】构造二次函数

    评:b+c,bc好比向量里的一组基底,可以将关于b,c的对称式表示出来.

  3. MT【206】证明整数数列

    已知方程$x^3-x^2-x+1=0$,的三根根为$a,b,c$,若$k_n=\dfrac{a^n-b^n}{a-b}+\dfrac{b^n-c^n}{b-c}+\dfrac{c^n-a^n}{c-a ...

  4. MT【63】证明不是周期函数

    证明$f(x)=sinx^2$不是周期函数. 反证:假设是周期函数,周期为$T,T>0$. $$f(0)=f(T)\Rightarrow sinT^2=0\Rightarrow T^2=k_1\ ...

  5. MT【33】证明琴生不等式

    解答:这里数学归纳法证明时指出关键的变形. 评:撇开琴生不等式自身的应用和意义外,单单就这个证明也是一道非常不错的练习数学归纳法的经典题目.

  6. MT【16】证明无理数(2)

    证明:$sin10^0$为无理数. 分析:此处用$sin$的三倍角公式,结合多项式有有理根必须满足的系数之间的关系可以证明. 评:证明$sin9^0$为无理数就不那么简单.思路:先利用$sin54^0 ...

  7. MT【15】证明无理数(1)

    证明:$tan3^0$是无理数. 分析:证明无理数的题目一般用反证法,最经典的就是$\sqrt{2}$是无理数的证明. 这里假设$tan3^0$是有理数,利用二倍角公式容易得到$tan6^0,tan1 ...

  8. E - Rebuild UVALive - 7187 (二次函数极值问题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5531 Problem Description Archaeologists find ruins of ...

  9. Line Search and Quasi-Newton Methods 线性搜索与拟牛顿法

    Gradient Descent 机器学习中很多模型的参数估计都要用到优化算法,梯度下降是其中最简单也用得最多的优化算法之一.梯度下降(Gradient Descent)[3]也被称之为最快梯度(St ...

随机推荐

  1. Iterable接口

    Iterable接口 总览 这个接口用来表明可以进行迭代.具体的迭代方式,可以通过iterator()方法获取到一个迭代器,在迭代器中会实现如何获取下一个元素,以及是否迭代结束. java8中源码如下 ...

  2. electron 开发实时加载

    第一个方式 cnpm install electron-reload --save-dev cnpm install electron-prebuilt --save-dev require('ele ...

  3. Flutter - 退出App

    Flutter退出App的方法一般有两种 ①SystemNavigator.pop 推荐 onTap: () async { await pop(); }, static Future<void ...

  4. item 12: 把重写函数声明为“override”的

    本文翻译自modern effective C++,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 C++中的面向对象编程总是围绕着类,继承,以及虚函数.这个世界中, ...

  5. Hexo+Github搭建博客问题

    搭建过程如下:   http://www.cnblogs.com/fengxiongZz/p/7707568.html   问题:第6步,发布上传代码一直不成功(没异常,也没成功).   解决:修改_ ...

  6. SpringCloud设定Feign底层实现

    1. 概述 版本: spring-boot:  1.5.9.RELEASE spring-cloud: Dalston.SR5 在默认情况下 spring cloud feign在进行各个子服务之间的 ...

  7. 网络:Session原理及存储

    一.Session的工作流程 二.会话保持 会话保持是负载均衡最常见的问题之一,会话保持是指在负载均衡器上实现的一种机制,可以识别客户端与服务器之间交互过程的关连性,在作负载均衡的同时还保证一系列相关 ...

  8. 实验二 合作:王宏财 http://www.cnblogs.com/wanghongcai/

    package 四则运算; import javax.swing.JFrame; import javax.swing.JButton; import javax.swing.JOptionPane; ...

  9. Python入门:如何使用第三方库?

    这是关于Python的第13篇文章,也是关于<编程小白的第1本Python入门书>内容的最后一篇,主要介绍下如何使用第三方库. 1. 第三方库 Python相当于一个手机,第三方库相当于手 ...

  10. Jquery 组 tbale表格隔行变色

    <!DOCTYPE html><html lang="zh-cn"><head> <meta charset="utf-8&qu ...