这种构造二次函数的方法最早接触的应该是在证明柯西不等式时:

再举一例:

最后再举个反向不等式的例子:

评:此类题目的证明是如何想到的呢?他们都有一个明显的特征$AB\ge(\le)C^2$,此时构造二次函数利用$\Delta$证明,效果非常理想.

MT【39】构造二次函数证明的更多相关文章

  1. MT【219】构造二次函数

    (2012北大保送)已知$f(x)$是二次函数,且$a,f(a),f(f(a)),f(f(f(a)))$是正项等比数列;求证:$f(a)=a$ 构造二次函数$f(x)=qx$,则$a,f(a),f(f ...

  2. MT【114】构造二次函数

    评:b+c,bc好比向量里的一组基底,可以将关于b,c的对称式表示出来.

  3. MT【206】证明整数数列

    已知方程$x^3-x^2-x+1=0$,的三根根为$a,b,c$,若$k_n=\dfrac{a^n-b^n}{a-b}+\dfrac{b^n-c^n}{b-c}+\dfrac{c^n-a^n}{c-a ...

  4. MT【63】证明不是周期函数

    证明$f(x)=sinx^2$不是周期函数. 反证:假设是周期函数,周期为$T,T>0$. $$f(0)=f(T)\Rightarrow sinT^2=0\Rightarrow T^2=k_1\ ...

  5. MT【33】证明琴生不等式

    解答:这里数学归纳法证明时指出关键的变形. 评:撇开琴生不等式自身的应用和意义外,单单就这个证明也是一道非常不错的练习数学归纳法的经典题目.

  6. MT【16】证明无理数(2)

    证明:$sin10^0$为无理数. 分析:此处用$sin$的三倍角公式,结合多项式有有理根必须满足的系数之间的关系可以证明. 评:证明$sin9^0$为无理数就不那么简单.思路:先利用$sin54^0 ...

  7. MT【15】证明无理数(1)

    证明:$tan3^0$是无理数. 分析:证明无理数的题目一般用反证法,最经典的就是$\sqrt{2}$是无理数的证明. 这里假设$tan3^0$是有理数,利用二倍角公式容易得到$tan6^0,tan1 ...

  8. E - Rebuild UVALive - 7187 (二次函数极值问题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5531 Problem Description Archaeologists find ruins of ...

  9. Line Search and Quasi-Newton Methods 线性搜索与拟牛顿法

    Gradient Descent 机器学习中很多模型的参数估计都要用到优化算法,梯度下降是其中最简单也用得最多的优化算法之一.梯度下降(Gradient Descent)[3]也被称之为最快梯度(St ...

随机推荐

  1. 外部Jenkins调用容器中Slave配置实践

    1.Jenkins配置 实现动态生成的Slave节点并调用,解决构建项目出现slave节点任务堵塞或者是slave宕机问题.容器平台采用openshift. 参考配置文档:https://blog.c ...

  2. SPOJ GSS(Can you answer the Queries)系列 7/8

    GSS1 线段树最大子段和裸题,不带修改,注意pushup. 然而并不会猫树之类的东西 #include<bits/stdc++.h> #define MAXN 50001 using n ...

  3. Luogu1967 NOIP2013 货车运输 最大生成树、倍增

    传送门 题意:给出一个$N$个节点.$M$条边的图,$Q$次询问,每一次询问两个点之间的所有可行路径中经过的边的边权的最小值中的最大值.$N \leq 10000 , M \leq 50000 , Q ...

  4. browserify运行原理分析

    目前对于前端工程师而言,如果只针对浏览器编写代码,那么很简单,只需要在页面的script脚本中引入所用js就可以了. 但是某些情况下,我们可能需要在服务端也跑一套类似的逻辑代码,考虑如下这些情景(以n ...

  5. C#的RSA加密解密签名,就为了支持PEM PKCS#8格式密钥对的导入导出

    差点造了一整个轮子 .Net Framework 4.5 里面的RSA功能,并未提供简单对PEM密钥格式的支持(.Net Core有咩?),差点(还远着)造了一整个轮子,就为了支持PEM PKCS#8 ...

  6. Nagios数据存储插件NDOUtils部署和测试

    1. 概述 NDOUTILS,Nagios Data Output Utils,Nagios数据输出工具,允许用户从Nagios导出状态和事件信息到数据库中,便于以后的检索和加工 它包括几个部分: N ...

  7. FFMPEG指令

    FFmpeg是一个用于音视频处理的自由软件,被广泛用于音视频开发.FFmpeg功能强大,本文主要介绍如何使用FFmpeg命令行工具进行简单的视频处理. 安装FFmpeg可以在官网下载各平台软件包或者静 ...

  8. VS2010、VS2012、VS2013、VS2015、VS2017各版本产品激活秘钥

    Visual Studio 2017(VS2017) 企业版 Enterprise 注册码:NJVYC-BMHX2-G77MM-4XJMR-6Q8QF Visual Studio 2017(VS201 ...

  9. Spring RPC 入门学习(3)-插入Student对象

    Spring RPC 向后台传递对象 1. 新建RPC接口:StudentInterface.java package com.cvicse.ump.rpc.interfaceDefine; impo ...

  10. Python 中的字符串(str)、字典(dict)详解及操作方法

    一.字符串 在python中字符串是一种重要数据类型.其他数据类型分别为: 数字-number -------- int.long.float.complex这几种 字符串-string ------ ...