考虑统计每一轮(以抽到小丑为一轮)的贡献,不难发现答案即期望轮数*每轮期望次数

关于期望轮数,当前牌堆里已经在$S$中的卡实际上没有意义,不妨将这一类卡从牌堆中删除

此时,定义$f_{i}$表示$S$中含有$n-i$个元素,之后期望还需要几轮(包括当前这轮)

显然$f_{0}=1$,问题即求$f_{n}$,不难得到转移为$f_{i}=\frac{m}{m+i}(f_{i}+1)+\frac{i}{m+i}f_{i-1}$

将其化简,即有$f_{i}=f_{i-1}+\frac{m}{i}$,因此$f_{n}=\sum_{i=1}^{n}\frac{m}{i}+1$

关于每轮期望次数,定义$g_{i}$表示前$i$次未抽到小丑的概率(也即$P(X\ge i+1)$)

显然$g_{0}=1$,问题即求$\sum_{i=0}^{n}g_{i}$,转移为$g_{i+1}=\frac{n-i}{m+n-i}g_{i}$,即有$g_{i}=\frac{n!(m+n-i)!}{(n-i)!(m+n)!}$

期望次数为$\sum_{i=0}^{n}g_{i}=\frac{n!}{(m+n)!}\sum_{i=0}^{n}m!{n+m-i\choose m}=\frac{{m+n+1\choose n}}{m+n\choose n}=\frac{n}{m+1}+1$

最终,答案即$(\sum_{i=1}^{n}\frac{m}{i}+1)(\frac{n}{m+1}+1)$,时间复杂度为$o(n)$

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 3000005
4 #define mod 998244353
5 int n,m,ans,inv[N];
6 int main(){
7 inv[0]=inv[1]=1;
8 for(int i=2;i<N;i++)inv[i]=1LL*(mod-mod/i)*inv[mod%i]%mod;
9 scanf("%d%d",&n,&m);
10 for(int i=1;i<=n;i++)ans=(ans+1LL*m*inv[i])%mod;
11 ans=1LL*(ans+1)*(1LL*n*inv[m+1]%mod+1)%mod;
12 printf("%d",ans);
13 }

[cf1392H]ZS Shuffles Cards的更多相关文章

  1. Codeforces 1392H - ZS Shuffles Cards(DP+打表找规律)

    Codeforces 题面传送门 & 洛谷题面传送门 真·两天前刚做过这场的 I 题,今天模拟赛就考了这场的 H 题,我怕不是预言带师 提供一种奇怪的做法,来自于同机房神仙们,该做法不需要 M ...

  2. Solution -「CF 1392H」ZS Shuffles Cards

    \(\mathcal{Description}\)   Link.   打乱的 \(n\) 张编号 \(1\sim n\) 的数字排和 \(m\) 张鬼牌.随机抽牌,若抽到数字,将数字加入集合 \(S ...

  3. 组合数学 - 置换群的幂运算 --- poj CARDS (洗牌机)

    CARDS Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1448   Accepted: 773 Description ...

  4. POJ 1721 CARDS

    Alice and Bob have a set of N cards labelled with numbers 1 ... N (so that no two cards have the sam ...

  5. BZOJ 1004 【HNOI2008】 Cards

    题目链接:Cards 听说这道题是染色问题的入门题,于是就去学了一下\(Bunside\)引理和\(P\acute{o}lya\)定理(其实还是没有懂),回来写这道题. 由于题目中保证"任意 ...

  6. Codeforces Round #384 (Div. 2) 734E Vladik and cards

    E. Vladik and cards time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  7. bzoj 1004 Cards

    1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有 多少种染色方案,Sun ...

  8. codeforces 744C Hongcow Buys a Deck of Cards

    C. Hongcow Buys a Deck of Cards time limit per test 2 seconds memory limit per test 256 megabytes in ...

  9. Codeforces 711E ZS and The Birthday Paradox

    传送门 time limit per test 2 seconds memory limit per test 256 megabytes input standard input output st ...

随机推荐

  1. 10.10 Rewrite 实战

    将baidu.com跳转到www.baidu.com server { listen 80; server_name baidu.com; rewrite ^/ http://www.baidu.co ...

  2. DL4J实战之四:经典卷积实例(GPU版本)

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  3. pycharm中设置自己的文件模板

    File>>Settings>>Editor>>File and Code Templates 选择文件类型Python Scripts,输入文件模板类型 #!/u ...

  4. FastAPI 学习之路(十七)上传文件

    系列文章: FastAPI 学习之路(一)fastapi--高性能web开发框架 FastAPI 学习之路(二) FastAPI 学习之路(三) FastAPI 学习之路(四) FastAPI 学习之 ...

  5. fastjson反序列化-JdbcRowSetImpl利用链

    fastjson反序列化-JdbcRowSetImpl利用链 JdbcRowSetImpl利用链 fastjson反序列化JdbcRowSetImpl - Afant1 - 博客园 (cnblogs. ...

  6. ShutdownHook原理

    微信搜索"捉虫大师",点赞.关注是对我最大的鼓励 ShutdownHook介绍 在java程序中,很容易在进程结束时添加一个钩子,即ShutdownHook.通常在程序启动时加入以 ...

  7. [技术博客]WEB实现划词右键操作

    [技术博客]WEB实现划词右键操作 一.功能解释 简单地对题目中描述的功能进行解释:在浏览器中,通过拖动鼠标选中一个词(或一段文字),右键弹出菜单,且菜单为自定义菜单,而非浏览器本身的菜单.类似的功能 ...

  8. ssh后门反向代理实现内网穿透

    如图所示,内网主机ginger 无公网IP地址,防火墙只允许ginger连接blackbox.example.com主机 假如你是ginger的管理员root,你想要用tech主机连接ginger主机 ...

  9. spring cloud config 结合 spring cloud bus实现配置自定的刷新

    在线上环境中,有时候我们希望系统中的某些配置参数在修改后,可以立即生效而不用重新启动服务.由上一节我们知道,我们可以把配置文件统一放到配置服务中进行管理,这一节我们在配置中心中整合spring clo ...

  10. 「总结」$dp1$

    大概就是做点题. 先列一下要做的题目列表,从\(UOJ\)上找的. 129寿司晚宴 348州区划分 370滑稽树上滑稽果 457数树 22外星人 37主旋律 300吉夫特 196线段树 311积劳成疾 ...