考虑统计每一轮(以抽到小丑为一轮)的贡献,不难发现答案即期望轮数*每轮期望次数

关于期望轮数,当前牌堆里已经在$S$中的卡实际上没有意义,不妨将这一类卡从牌堆中删除

此时,定义$f_{i}$表示$S$中含有$n-i$个元素,之后期望还需要几轮(包括当前这轮)

显然$f_{0}=1$,问题即求$f_{n}$,不难得到转移为$f_{i}=\frac{m}{m+i}(f_{i}+1)+\frac{i}{m+i}f_{i-1}$

将其化简,即有$f_{i}=f_{i-1}+\frac{m}{i}$,因此$f_{n}=\sum_{i=1}^{n}\frac{m}{i}+1$

关于每轮期望次数,定义$g_{i}$表示前$i$次未抽到小丑的概率(也即$P(X\ge i+1)$)

显然$g_{0}=1$,问题即求$\sum_{i=0}^{n}g_{i}$,转移为$g_{i+1}=\frac{n-i}{m+n-i}g_{i}$,即有$g_{i}=\frac{n!(m+n-i)!}{(n-i)!(m+n)!}$

期望次数为$\sum_{i=0}^{n}g_{i}=\frac{n!}{(m+n)!}\sum_{i=0}^{n}m!{n+m-i\choose m}=\frac{{m+n+1\choose n}}{m+n\choose n}=\frac{n}{m+1}+1$

最终,答案即$(\sum_{i=1}^{n}\frac{m}{i}+1)(\frac{n}{m+1}+1)$,时间复杂度为$o(n)$

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 3000005
4 #define mod 998244353
5 int n,m,ans,inv[N];
6 int main(){
7 inv[0]=inv[1]=1;
8 for(int i=2;i<N;i++)inv[i]=1LL*(mod-mod/i)*inv[mod%i]%mod;
9 scanf("%d%d",&n,&m);
10 for(int i=1;i<=n;i++)ans=(ans+1LL*m*inv[i])%mod;
11 ans=1LL*(ans+1)*(1LL*n*inv[m+1]%mod+1)%mod;
12 printf("%d",ans);
13 }

[cf1392H]ZS Shuffles Cards的更多相关文章

  1. Codeforces 1392H - ZS Shuffles Cards(DP+打表找规律)

    Codeforces 题面传送门 & 洛谷题面传送门 真·两天前刚做过这场的 I 题,今天模拟赛就考了这场的 H 题,我怕不是预言带师 提供一种奇怪的做法,来自于同机房神仙们,该做法不需要 M ...

  2. Solution -「CF 1392H」ZS Shuffles Cards

    \(\mathcal{Description}\)   Link.   打乱的 \(n\) 张编号 \(1\sim n\) 的数字排和 \(m\) 张鬼牌.随机抽牌,若抽到数字,将数字加入集合 \(S ...

  3. 组合数学 - 置换群的幂运算 --- poj CARDS (洗牌机)

    CARDS Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1448   Accepted: 773 Description ...

  4. POJ 1721 CARDS

    Alice and Bob have a set of N cards labelled with numbers 1 ... N (so that no two cards have the sam ...

  5. BZOJ 1004 【HNOI2008】 Cards

    题目链接:Cards 听说这道题是染色问题的入门题,于是就去学了一下\(Bunside\)引理和\(P\acute{o}lya\)定理(其实还是没有懂),回来写这道题. 由于题目中保证"任意 ...

  6. Codeforces Round #384 (Div. 2) 734E Vladik and cards

    E. Vladik and cards time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  7. bzoj 1004 Cards

    1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有 多少种染色方案,Sun ...

  8. codeforces 744C Hongcow Buys a Deck of Cards

    C. Hongcow Buys a Deck of Cards time limit per test 2 seconds memory limit per test 256 megabytes in ...

  9. Codeforces 711E ZS and The Birthday Paradox

    传送门 time limit per test 2 seconds memory limit per test 256 megabytes input standard input output st ...

随机推荐

  1. Linux下iptables学习笔记

    Linux下iptables学习笔记 在Centos7版本之后,防火墙应用已经由从前的iptables转变为firewall这款应用了.但是,当今绝大多数的Linux版本(特别是企业中)还是使用的6. ...

  2. .NET Core 基于Quartz的UI可视化操作组件 GZY.Quartz.MUI 简介

    前言 最近在用Quartz做定时任务.虽然很方便,但是Quartz自己貌似是没有UI界面的..感觉操作起来 就很难受.. 查了一下,貌似有个UI组件 不过看了一下文档..直接给我劝退了..太麻烦了 我 ...

  3. JVM详解(四)——运行时数据区-堆

    一.堆 1.介绍 Java运行程序对应一个进程,一个进程就对应一个JVM实例.一个JVM实例就有一个运行时数据区(Runtime),Runtime里面,就只有一个堆,一个方法区.这里也阐述了,方法区和 ...

  4. SpringBoot 01 hello world 01

    hello world项目结构: pom中配置的依赖相当于spring boot的可安装插件,需要下载的依赖直接在里边配置. 目前用到的每个注解: 1.主程序中 @SpringBootApplicat ...

  5. Java字符串分割函数split源码分析

    spilt方法作用 以所有匹配regex的子串为分隔符,将input划分为多个子串. 例如: The input "boo:and:foo", for example, yield ...

  6. logstash处理多行日志-处理java堆栈日志

    logstash处理多行日志-处理java堆栈日志 一.背景 二.需求 三.实现思路 1.分析日志 2.实现,编写pipeline文件 四.注意事项 五.参考文档 一.背景 在我们的java程序中,经 ...

  7. redis5集群搭建步骤

    通常情况下为了redis的高可用,我们一般不会使用redis的单实例去运行,一般都会搭建一个 redis 的集群去运行.此处记录一下 redis5 以后 cluster 集群的搭建. 一.需求 red ...

  8. X264编码测试验证

    之前在做一个rtsp直播需求,其中一个方案是要用的x264来对摄像头数据进行实时编码推流,摄像头帧率是25fps,为了验证方案的可行性,先对x264的编码速度进行一个测试研究,再确认是否要采用此方案. ...

  9. 基于live555开发嵌入式linux系统的rtsp直播服务

    最近要搞一个直播服务,车机本身是个前后双路的Dvr,前路1080P 25fps,后路720P 50fps,现在要连接手机app预览实时画面,且支持前后摄像头画面切换. 如果要做直播,这个分辨率和帧率是 ...

  10. hdu 2795 Billboard(单点更新,区间查询)

    题意: h*w的白板. 有n个广告牌,每个广告牌是1*wi.必须放置在白板的upmost中的leftmost. 输出n个广告牌放置在第几行.如果放不下,输出-1. 数据规格: h, w, and n ...