TVM交叉编译和远程RPC
TVM交叉编译和远程RPC
本文介绍了TVM中使用RPC的交叉编译和远程设备执行。
使用交叉编译和RPC,可以在本地计算机上编译程序,然后在远程设备上运行它。当远程设备资源受到限制时(如Raspberry Pi和移动平台),此功能很有用。本文将使用Raspberry Pi作为CPU示例,并使用Firefly-RK3399作为OpenCL示例。
在设备上构建TVM运行时
第一步是在远程设备上构建TVM运行时。
本文所有指令都应在目标设备(例如Raspberry Pi)上执行。假设目标正在运行Linux。
由于在本地计算机上进行编译,因此远程设备仅用于运行生成的代码。只需要在远程设备上构建TVM运行时。
git clone --recursive https://github.com/apache/tvm tvm
cd tvm
make runtime -j2
成功构建运行时后,需要在~/.bashrc文件中设置环境变量。可以~/.bashrc 使用进行编辑并添加以下行(假设TVM目录位于):vi ~/.bashrc~/tvm
export PYTHONPATH=$PYTHONPATH:~/tvm/python
要更新环境变量,执行。source ~/.bashrc
在设备上设置RPC服务器
要启动RPC服务器,在远程设备上运行以下命令(在本示例中为Raspberry Pi)。
python -m tvm.exec.rpc_server --host 0.0.0.0 --port=9090
如果看到下面的行,则表明RPC服务器已在设备上成功启动。
INFO:root:RPCServer: bind to 0.0.0.0:9090
在本地计算机上声明并交叉编译内核
现在,返回安装了完整TVM(带有LLVM)的本地计算机。
将在本地计算机上声明一个简单的内核:
import numpy as np
import tvm
from tvm import te
from tvm import rpc
from tvm.contrib import utils
n = tvm.runtime.convert(1024)
A = te.placeholder((n,), name="A")
B = te.compute((n,), lambda i: A[i] + 1.0, name="B")
s = te.create_schedule(B.op)
然后交叉编译内核。对于Raspberry Pi 3B,目标应该是'llvm -mtriple = armv7l-linux-gnueabihf',在这里使用'llvm'来使本文可在网页构建服务器上运行。参见以下块中的详细说明。
local_demo = True
if local_demo:
target = "llvm"
else:
target = "llvm -mtriple=armv7l-linux-gnueabihf"
func = tvm.build(s, [A, B], target=target, name="add_one")
# save the lib at a local temp folder
temp = utils.tempdir()
path = temp.relpath("lib.tar")
func.export_library(path)
Readme
要运行这个教程与真正的远程设备,更改local_demo 为False,并取代target在build与三联供设备适当的目标。目标三元组对于不同的设备可能有所不同。例如,它适用 于Raspberry Pi 3B和 RK3399。'llvm -mtriple=armv7l-linux-gnueabihf''llvm -mtriple=aarch64-linux-gnu'
可以通过在设备上运行并查询以 ()开头的行)来查询目标(尽管可能仍然是宽松的配置。)gcc -vTarget:
此外-mtriple,还可以设置别的编译选项,例如:
- -mcpu = <cpuname>
在当前架构中指定要为其生成代码的特定芯片。默认情况下,这是从目标三元组推断出来的,并自动检测到当前体系结构。
- -mattr = a1,+ a2,-a3,...
覆盖或控制目标的特定属性,例如是否启用SIMD操作。默认属性集由当前CPU设置。要获取可用属性的列表,可以执行以下操作:
llc -mtriple=<your device target triple> -mattr=help
这些选项与llc一致。建议设置目标三元组和功能集以包含可用的特定功能,充分利用开发板的功能。可以从《交叉编译的LLVM指南》中找到有关交叉编译属性的更多详细信息 。
通过RPC远程运行CPU内核
展示了如何在远程设备上运行生成的CPU内核。首先,从远程设备获取RPC会话。
if local_demo:
remote = rpc.LocalSession()
else:
# The following is my environment, change this to the IP address of your target device
host = "10.77.1.162"
port = 9090
remote = rpc.connect(host, port)
将库上传到远程设备,然后调用设备本地编译器以重新链接。现在func是一个远程模块对象。
remote.upload(path)
func = remote.load_module("lib.tar")
# create arrays on the remote device
ctx = remote.cpu()
a = tvm.nd.array(np.random.uniform(size=1024).astype(A.dtype), ctx)
b = tvm.nd.array(np.zeros(1024, dtype=A.dtype), ctx)
# the function will run on the remote device
func(a, b)
np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
当要评估远程设备上内核的性能时,避免网络开销很重要。 time_evaluator将返回一个远程函数,该函数多次运行该函数,测量该远程设备上的每次运行成本,并返回测得的成本。排除网络开销。
time_f = func.time_evaluator(func.entry_name, ctx, number=10)
cost = time_f(a, b).mean
print("%g secs/op" % cost)
输出:
1.161e-07 secs/op
通过RPC远程运行OpenCL内核
对于远程OpenCL设备,工作流程与上面的工作流程几乎相同。可以定义内核,上传文件并通过RPC运行。
Raspberry Pi不支持OpenCL,以下代码在Firefly-RK3399上进行了测试。可以按照本文 为RK3399设置操作系统和OpenCL驱动程序。
另外,需要在rk3399板上启用OpenCL来构建运行时。在TVM根目录中,执行
cp cmake/config.cmake .
sed -i "s/USE_OPENCL OFF/USE_OPENCL ON/" config.cmake
make runtime -j4
以下函数显示了如何远程运行OpenCL内核
def run_opencl():
# NOTE: This is the setting for my rk3399 board. You need to modify
# them according to your environment.
target_host = "llvm -mtriple=aarch64-linux-gnu"
opencl_device_host = "10.77.1.145"
opencl_device_port = 9090
# create schedule for the above "add one" compute declaration
s = te.create_schedule(B.op)
xo, xi = s[B].split(B.op.axis[0], factor=32)
s[B].bind(xo, te.thread_axis("blockIdx.x"))
s[B].bind(xi, te.thread_axis("threadIdx.x"))
func = tvm.build(s, [A, B], "opencl", target_host=target_host)
remote = rpc.connect(opencl_device_host, opencl_device_port)
# export and upload
path = temp.relpath("lib_cl.tar")
func.export_library(path)
remote.upload(path)
func = remote.load_module("lib_cl.tar")
# run
ctx = remote.cl()
a = tvm.nd.array(np.random.uniform(size=1024).astype(A.dtype), ctx)
b = tvm.nd.array(np.zeros(1024, dtype=A.dtype), ctx)
func(a, b)
np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
print("OpenCL test passed!")
概括
本文提供了TVM中的交叉编译和RPC功能的演练。
- 在远程设备上设置RPC服务器。
- 设置目标设备配置以交叉编译本地计算机上的内核。
- 通过RPC API远程上载和运行内核。
TVM交叉编译和远程RPC的更多相关文章
- rabbitmq学习(四):利用rabbitmq实现远程rpc调用
一.rabbitmq实现rpc调用的原理 ·rabbitmq实现rpc的原理是:客户端向一个队列中发送消息,并注册一个回调的队列用于接收服务端返回的消息,该消息需要声明一个叫做correaltionI ...
- go语言net包rpc远程调用的使用
一.基于http的RPC 服务端: package main; import ( "net/rpc" "net/http" "log" ) ...
- 用TVM在硬件平台上部署深度学习工作负载的端到端 IR 堆栈
用TVM在硬件平台上部署深度学习工作负载的端到端 IR 堆栈 深度学习已变得无处不在,不可或缺.这场革命的一部分是由可扩展的深度学习系统推动的,如滕索弗洛.MXNet.咖啡和皮托奇.大多数现有系统针对 ...
- TVM:一个端到端的用于开发深度学习负载以适应多种硬件平台的IR栈
TVM:一个端到端的用于开发深度学习负载以适应多种硬件平台的IR栈 本文对TVM的论文进行了翻译整理 深度学习如今无处不在且必不可少.这次创新部分得益于可扩展的深度学习系统,比如 TensorFlo ...
- 游戏编程系列[1]--游戏编程中RPC协议的使用[3]--体验
运行环境,客户端一般编译为.Net 3.5 Unity兼容,服务端因为用了一些库,所以一般为4.0 或往上.同一份代码,建立拥有2个项目.客户端引用: WindNet.Client服务端引用: OpL ...
- 基于Netty打造RPC服务器设计经验谈
自从在园子里,发表了两篇如何基于Netty构建RPC服务器的文章:谈谈如何使用Netty开发实现高性能的RPC服务器.Netty实现高性能RPC服务器优化篇之消息序列化 之后,收到了很多同行.园友们热 ...
- RPC框架性能基本比较测试
RPC框架:gRPC.Thrift.Wildfly.Dubbo 原文链接:http://www.open-open.com/lib/view/open1426302068107.html gRPC是G ...
- RabbitMQ 原文译06--Remote procedure call(RPC)
在第三篇文章中, 我们学习了怎么使用队列在多了消息消费者当中进行耗时任务轮询. 但是如果我们想要在远程电脑上运行一个方法,然后等待其执行结果,这就是一个不同的场景,这种就是我们一般讲的RPC(远程过程 ...
- man statd(rpc.statd中文手册)
本人译作集合:http://www.cnblogs.com/f-ck-need-u/p/7048359.html rpc.statd程序主要实现NFS锁相关内容,如普通的文件锁(NLM.NSM).文件 ...
随机推荐
- Thinkphp5之ajax分页实现_paginate()参数详细
Thinkphp5 做数据搜索需要带关键词分页,如何将查询条件带入到分页中,本文详细介绍Thinkphp5 分页带参数 一.基本使用方法: $list = Db::name('user')->w ...
- 过 DNF TP 驱动保护(二)
过 DNF TP 驱动保护(二) 文章目录: 01. 博文简介: 02. 环境及工具准备: 03. 分析 TP 所做的保护: 04. 干掉 NtOpenProc ...
- ZOJ3715 竞选班长求最小花费
题意: 有n个小朋友竞选班长,一号想当班长,每个人都必须选择一个人当班长,并且不可以选择自己,并且每个人都有一个权值ai,这个权值就是如果1想让这个人改变主意选择自己当班长就得给他ai个糖 ...
- Windows本地安全策略
目录 本地安全策略 密码策略 账户策略 审核策略 用户权限分配 安全选项 本地安全策略 安全策略是影响计算机安全性的安全设置的组合.可以利用本地安全策略来编辑本地计算机上的帐户 系统安全策略包括下面的 ...
- hdu4642博弈(矩阵)
题意: 给一个01矩阵,每次可以选择1的格子,选择之后以他为左上角的矩阵全都取反,两个人轮班取,不能取的人输. 思路: 博弈的题目,结论是右下角是0就输,1就赢,原因可以这么 ...
- POJ3762 时间段用k次
题意: 有n个任务,每个任务有自己的开始时间和结束时间,还有完成这个任务能获得的价值,然后每一天的同一个时刻只能执行一个任务,每个任务必须连续执行完成,最多可以工作m天,问这m天能获得的最 ...
- Linux下查看在线用户及用户进程
#该服务器下的所有用户运行进程的情况 ps -ax -u #查看java程序下用户的进程情况 ps -ax -u |grep java 或 ps aux|grep java cat /etc/p ...
- Nmap浅析(2)——端口发现
端口发现 每台网络设备最多有216(65536)个端口,端口的作用是实现"一机多用".操作系统分了65536个端口号,程序在发送的信息中加入端口号,操作系统在接收到信息后按照端 ...
- Summer——从头开始写一个简易的Spring框架
Summer--从头开始写一个简易的Spring框架 参考Spring框架实现一个简易类似的Java框架.计划陆续实现IOC.AOP.以及数据访问模块和事务控制模块. ...
- [论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximati
[论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximation 本文结构 解决问题 主要贡献 主要 ...