题解 Dove 打扑克
考场上觉得复杂度是假的就没怎么优化,然后考完题解帮我证明了它是真的……
首先合并可以用并查集维护,可以顺便维护出集合的大小
对于操作2,发现如果 \(size_i\) 是确定的,可以用权值线段树很方便的维护出合法的 \(size_j\)的个数
每次只需枚举出现过的 \(size_i\) 即可,所以我觉得复杂度是假的
- 如果存在 \(\sum a_i = n\) ,那么有 \(diff \{a_i\} \leqslant \sqrt n\)
我们有 \(\sum size_i = n\) ,所以不同的size个数只有不超过根号个
所以用个unordered_set维护当前存在的size,线段树查询即可
yysy,我把线段树换成树状数组从1700ms变成了400ms
Code:
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define N 100010
#define ll long long
#define reg register int
//#define int long long
char buf[1<<21], *p1=buf, *p2=buf;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf, 1, 1<<21, stdin)), p1==p2?EOF:*p1++)
inline int read() {
int ans=0, f=1; char c=getchar();
while (!isdigit(c)) {if (c=='-') f=-f; c=getchar();}
while (isdigit(c)) {ans=(ans<<3)+(ans<<1)+(c^48); c=getchar();}
return ans*f;
}
int n, m;
int fa[N], cnt[N];
bool vis[N];
inline int find(int p) {return fa[p]==p?p:fa[p]=find(fa[p]);}
namespace force{
void solve() {
for (int i=1; i<=n; ++i) fa[i]=i, cnt[i]=1, vis[i]=1;
ll ans;
for (int i=1,x,y,c,f1,f2; i<=m; ++i) {
if (read()&1) {
x=read(); y=read();
f1=find(x), f2=find(y);
if (f1!=f2) {
cnt[f1]+=cnt[f2];
vis[f2]=0;
fa[f2]=f1;
}
}
else {
ans=0;
c=read();
for (int i=1; i<=n; ++i) if (vis[i])
for (int j=i+1; j<=n; ++j) if (vis[j])
if (abs(cnt[i]-cnt[j])>=c) ++ans;
printf("%lld\n", ans);
}
}
exit(0);
}
}
namespace task1{
int tl[N<<2], tr[N<<2], sum[N<<2];
#define tl(p) tl[p]
#define tr(p) tr[p]
#define sum(p) sum[p]
#define pushup(p) sum(p)=sum(p<<1)+sum(p<<1|1)
void build(int p, int l, int r) {
tl(p)=l; tr(p)=r;
if (l==r) return ;
int mid=(l+r)>>1;
build(p<<1, l, mid);
build(p<<1|1, mid+1, r);
}
void upd(int p, int pos, int dat) {
if (tl(p)==tr(p)) {sum(p)+=dat; return ;}
int mid=(tl(p)+tr(p))>>1;
if (pos<=mid) upd(p<<1, pos, dat);
else upd(p<<1|1, pos, dat);
pushup(p);
}
int query(int p, int l, int r) {
if (l<=tl(p) && r>=tr(p)) return sum(p);
int mid=(tl(p)+tr(p))>>1, ans=0;
if (l<=mid) ans+=query(p<<1, l, r);
if (r>mid) ans+=query(p<<1|1, l, r);
return ans;
}
void solve() {
build(1, 1, n); upd(1, 1, n);
for (int i=1; i<=n; ++i) fa[i]=i, cnt[i]=1, vis[i]=1;
ll ans;
for (int i=1,x,y,c,f1,f2; i<=m; ++i) {
if (read()&1) {
x=read(); y=read();
f1=find(x), f2=find(y);
if (f1!=f2) {
upd(1, cnt[f1], -1); upd(1, cnt[f2], -1);
cnt[f1]+=cnt[f2];
upd(1, cnt[f1], 1);
vis[f2]=0;
fa[f2]=f1;
}
}
else {
ans=0;
c=read();
for (reg i=1,l,r; i<=n; ++i) if (vis[i]) {
if ((l=cnt[i]-c)>=1) ans+=query(1, 1, l)-(c==0);
if ((r=cnt[i]+c+(c==0))<=n) ans+=query(1, r, n);
}
printf("%lld\n", ans/2);
}
}
exit(0);
}
}
namespace task2{
int tl[N<<2], tr[N<<2], sum[N<<2], tot[N], maxn=1;
#define tl(p) tl[p]
#define tr(p) tr[p]
#define sum(p) sum[p]
#define pushup(p) sum(p)=sum(p<<1)+sum(p<<1|1)
void build(int p, int l, int r) {
tl(p)=l; tr(p)=r;
if (l==r) return ;
int mid=(l+r)>>1;
build(p<<1, l, mid);
build(p<<1|1, mid+1, r);
}
void upd(int p, int pos, int dat) {
if (tl(p)==tr(p)) {sum(p)+=dat; return ;}
int mid=(tl(p)+tr(p))>>1;
if (pos<=mid) upd(p<<1, pos, dat);
else upd(p<<1|1, pos, dat);
pushup(p);
}
int query(int p, int l, int r) {
if (l<=tl(p) && r>=tr(p)) return sum(p);
int mid=(tl(p)+tr(p))>>1, ans=0;
if (l<=mid) ans+=query(p<<1, l, r);
if (r>mid) ans+=query(p<<1|1, l, r);
return ans;
}
void solve() {
build(1, 1, n); upd(1, 1, n); tot[1]=n;
for (int i=1; i<=n; ++i) fa[i]=i, cnt[i]=1, vis[i]=1;
ll ans;
for (int i=1,x,y,c,f1,f2; i<=m; ++i) {
if (read()&1) {
x=read(); y=read();
f1=find(x), f2=find(y);
if (f1!=f2) {
upd(1, cnt[f1], -1); upd(1, cnt[f2], -1);
--tot[cnt[f1]]; --tot[cnt[f2]];
cnt[f1]+=cnt[f2];
++tot[cnt[f1]]; maxn=max(maxn, cnt[f1]);
upd(1, cnt[f1], 1);
vis[f2]=0;
fa[f2]=f1;
}
}
else {
ans=0;
c=read();
for (reg i=1,l,r; i<=maxn; ++i) if (tot[i]) {
if ((l=i-c)>=1) ans+=1ll*tot[i]*(query(1, 1, l)-(c==0));
//cout<<"l: "<<l<<' '<<tot[i]*(query(1, 1, l)-(c==0))<<endl;
if ((r=i+c+(c==0))<=n) ans+=1ll*tot[i]*query(1, r, n);
//cout<<"r: "<<r<<' '<<query(1, r, n)<<endl;
}
printf("%lld\n", ans/2);
}
}
exit(0);
}
}
namespace task{
unordered_set<int> s;
unordered_set<int>::iterator sta[N];
int sum[N], tot[N], top;
inline void upd(int i, int dat) {for (; i<=n; i+=i&-i) sum[i]+=dat;}
inline int query(int i) {int ans=0; for (; i; i-=i&-i) ans+=sum[i]; return ans;}
void solve() {
upd(1, n); tot[1]=n; s.insert(1);
for (int i=1; i<=n; ++i) fa[i]=i, cnt[i]=1, vis[i]=1;
ll ans;
for (int i=1,x,y,c,f1,f2; i<=m; ++i) {
if (read()&1) {
x=read(); y=read();
f1=find(x), f2=find(y);
if (cnt[f1]<cnt[f2]) swap(f1, f2);
if (f1!=f2) {
upd(cnt[f1], -1); upd(cnt[f2], -1);
--tot[cnt[f1]]; --tot[cnt[f2]];
cnt[f1]+=cnt[f2];
if (++tot[cnt[f1]]==1) s.insert(cnt[f1]);
upd(cnt[f1], 1);
vis[f2]=0;
fa[f2]=f1;
}
}
else {
ans=0;
c=read();
int l, r;
for (unordered_set<int>::iterator it=s.begin(); it!=s.end(); ++it) {
//cout<<"*it: "<<*it<<endl;
if (!tot[*it]) {sta[++top]=it; continue;}
if ((l=*it-c)>=1) ans+=1ll*tot[*it]*(query(l)-(c==0));
//cout<<"l: "<<l<<' '<<tot[i]*(query(1, 1, l)-(c==0))<<endl;
if ((r=*it+c+(c==0))<=n) ans+=1ll*tot[*it]*(query(n)-query(r-1));
//cout<<"r: "<<r<<' '<<query(1, r, n)<<endl;
}
while (top) s.erase(sta[top--]);
printf("%lld\n", ans/2);
}
}
exit(0);
}
}
signed main()
{
n=read(); m=read();
//if (n<=100) force::solve();
//else if (n<=1000) task1::solve();
//else task2::solve();
task::solve();
return 0;
}
题解 Dove 打扑克的更多相关文章
- 「10.28」Dove 打扑克(链表)·Cicada 与排序(概率)·Cicada 拿衣服(各种数据结构)
A. Dove 打扑克 考场思考半天线段树树状数组,没有什么想法 打完暴力后突然想到此题用链表实现会很快. 因为只有$n$堆,所以设最多有$x$个不同的堆数,那么$x\times (x-1)/2==n ...
- [UPC10525]:Dove打扑克(暴力+模拟)
题目描述 $Dove$和$Cicada$是好朋友,他们经常在一起打扑克来消遣时光,但是他们打的扑克有不同的玩法. 最开始时,牌桌上会有$n$个牌堆,每个牌堆有且仅有一张牌,第$i$个牌堆里里里那个扑克 ...
- NOIP 模拟 $36\; \rm Dove 打扑克$
题解 \(by\;zj\varphi\) 引理 对于一个和为 \(n\) 的数列,不同的数的个数最多为 \(\sqrt n\) 证明: 一个有 \(n\) 个不同的数的数列,和最小就是 \(n\) 的 ...
- 20210811 Dove 打扑克,Cicada 与排序,Cicada 拿衣服
考场 开考感觉 T3 比较可做.T1 看上去不难但毫无思路. 先想了 25min T3,想到一个确定左端点,二分最长的右端点,甚至想到了用猫树维护区间 or and...上厕所回来发现假了,没有单调性 ...
- 晚间测试13 A. Dove 打扑克 vector +模拟
题目描述 分析 这道题比较关键的一点就是要看出最终牌数的种类数不会超过 \(\sqrt{n}\) 种 知道了这个性质我们就可以用 \(vector\) 维护一个有序的序列 \(vector\) 中存放 ...
- Noip模拟36 2021.8.11
刚题的习惯还是改不了,怎么办??? T1 Dove打扑克 考场上打的动态开点线段树+并查集,考后发现自己像一个傻子,并查集就行.. 这几天恶补数据结构疯了 用树状数组维护后缀和,$siz_i$表示编号 ...
- csp-s模拟测试91
csp-s模拟测试91 倒悬吃屎的一套题. $T1$认真(?)分析题意发现复杂度不能带$n$(?),计划直接维护答案,考虑操作对答案的影响,未果.突然发现可以动态开点权值线段树打部分分,后来$Tm$一 ...
- noip模拟36
\(\color{white}{\mathbb{荷花映日,莲叶遮天,名之以:残荷}}\) 今天再次翻车掉出前十 开题看错 \(t1\) 以为操作2的值固定发现是个简单题,然后 \(t2\) 开始大力 ...
- 2021.8.11考试总结[NOIP模拟36]
T1 Dove玩扑克 考场并查集加树状数组加桶期望$65pts$实际$80pts$,考后多开个数组记哪些数出现过,只扫出现过的数就切了.用$set$维护可以把被删没的数去掉,更快. $code:$ 1 ...
随机推荐
- ESP32-FAT文件系统使用磨损均衡存储文件笔记
基于ESP-IDF4.1 1 /* 2 FAT文件系统存储文件,使用磨损均衡库wear-leveling 3 */ 4 5 #include <stdlib.h> 6 #include & ...
- C语言:赋值流程图
- Requests方法 --- post 请求body的四种类型
常见的 post 提交数据类型有四种: 1.第一种:application/json:这是最常见的 json 格式,也是非常友好的深受小伙伴喜欢的一种,如下{"input1":&q ...
- 达梦数据库(DM8)大规模并行集群MPP 2节点安装部署
达梦数据库大规模并行集群MPP 2节点安装部署 1.环境准备 os 数据库版本 ip mpp角色 centos7.x86 DM8 192.168.30.100 mpp1 centos7.x86 ...
- Docker编排利器DockerCompose
Docker 编排利器 DockerCompose,编排之后可以一次性通过一条命令启动一组服务 例如一条命令启动 SpringBoot 项目,同时启动 SpringBoot 项目依赖的其他中间件(My ...
- 基于 apache-arrow 的 duckdb rust 客户端
背景 duckdb 是一个 C++ 编写的单机版嵌入式分析型数据库.它刚开源的时候是对标 SQLite 的列存数据库,并提供与 SQLite 一样的易用性,编译成一个头文件和一个 cpp 文件就可以在 ...
- kafka单机环境配置以及基本操作
安装地址(已亲测有效):https://www.linuxidc.com/Linux/2019-03/157650.htm
- Skywalking-05:在Skywalking RocketBot上添加监控图表
在 Skywalking RocketBot 上添加监控图表 效果图 该图的一些配置信息如下: 标题为: JVM Thread State Count (Java Service) 指标为: read ...
- 如何让py生成pyd
pyd文件类似于C++中的dll,可以编译,但是看不到源代码. py转换成pyd参考链接:https://blog.csdn.net/weixin_44493841/article/details/1 ...
- 并发队列ConcurrentLinkedQueue与LinkedBlockingQueue源码分析与对比
目录 前言 ConcurrentLinkedQueue 使用方法 存储结构 初始化 入队 出队 获取容器元素数量 LinkedBlockingQueue 使用方法 存储结构 初始化 入队 出队 获取容 ...