联赛膜你测试20 T1 Simple 题解 && NOIP2017 小凯的疑惑 题解(赛瓦维斯特定理)
前言:
数学题,对于我这种菜B还是需要多磨啊
Simple
首先它问不是好数的数量,可以转化为用总数量减去是好数的数量。
求“好数”的数量:
由裴蜀定理得,如果某个数\(i\)不能整除\(gcd(n,m)\),那么一定不是好数。
所以,我们把\(n,m,q\)分别除以\(gcd(n,m)\),是不影响得出的“好数”数量的。
好,那么现在\(n,m\)就互质了。
现在,就把问题转化为了(用比较形象化的语言来说,就是)有\(n,m\)互质,求\([1,q]\)中有多少个数能被若干个\(n,m\)相加之后拼起来。
这个东西简单枚举两维的话,复杂度显然无法接受。我们可以考虑只枚举一维。
设\(n\)的系数是\(x\),\(m\)的系数是\(y\),且\(n\)小于\(m\)。
即\(n*x+m*y=c\);
那么就可以枚举\(y\),求\(x\)的数量即可。
边界问题很重要。
我们考虑y的边界,因为要算\((c-m*y)/n\),所以\(m*y<=c\);
然后会发现一个问题,如下图。
上面的长线段代表某个能被拼成的数,我们可以发现,如果枚举\(m\)的个数等于\(4\)时,这个数会被计算到。枚举\(m\)的个数等于\(0\),即\(n\)的个数等于\(5\)时,这个数又会被计算到,就会算重。
那么怎么去重呢?
我们会发现,因为\(n,m\)互质,上面的情况发生且只会发生在枚举的\(y\)大于等于\(n\)时才会出现。
所以就有了y的第二个边界,\(y<n\);
代码如下:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n,m,q;
ll gcd(ll x,ll y){
return y==0 ? x : gcd(y,x%y) ;
}
void Solve(){
int T;scanf("%d",&T);
while(T--){
scanf("%lld%lld%lld",&n,&m,&q);
ll ans=q;
if(n>m) swap(n,m);
ll ss=gcd(n,m);
n/=ss;
m/=ss;
q/=ss;
for(register int i=0;i*m<=q&&i<n;++i) ans-=(q-1ll*i*m)/n+1;
printf("%lld\n",ans+1);//ans+1的原因?
}
}
int main(){
freopen("simple.in","r",stdin);
freopen("simple.out","w",stdout);
Solve();
return 0;
}
这里还要注意一个点,最后\(ans\)要加一,原因是\(x=0,y=0\)的情况,这是不在\([1,q]\)区间中的,相当于多减去一个,然后就要加回来。
2.luogu P3951 小凯的疑惑 / [蓝桥杯2013省]买不到的数目
这个题放在D1T1是来恶心人的吗。。。找到规律就秒切,找不到规律就心态炸裂?
希望今年别出这种题。
据某工具人学长 所言,这玩意叫赛瓦维斯特定理。
emmm。。。动动的证明看懂了一部分
后来又看了这个链接疑似挂掉的博客
发现竟然折磨简单。
然后。。。我自己写的证明就先咕了吧
联赛膜你测试20 T1 Simple 题解 && NOIP2017 小凯的疑惑 题解(赛瓦维斯特定理)的更多相关文章
- 题解 P3951 小凯的疑惑
P3951 小凯的疑惑 数论极菜的小萌新我刚看这题时看不懂exgcd做法的题解,后来在网上找到了一篇博客,感觉代码和推导都更加清新易懂,于是在它的基础上写了题解qwq 分析 两数互质,且有无限个,想到 ...
- 题解【洛谷P3951】[NOIP2017]小凯的疑惑
题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...
- [CSP-S模拟测试]:小奇挖矿2(DP+赛瓦维斯特定理)
题目背景 小奇飞船的钻头开启了无限耐久+精准采集模式!这次它要将原矿运到泛光之源的矿石交易市场,以便为飞船升级无限非概率引擎. 题目描述 现在有$m+1$个星球,从左到右标号为$0$到$n$,小奇最初 ...
- 2021.07.20 P3951 小凯的疑惑(最大公因数,未证)
2021.07.20 P3951 小凯的疑惑(最大公因数,未证) 重点: 1.最大公因数 题意: 求ax+by最大的表示不了的数(a,b给定 x,y非负). 分析: 不会.--2021.07.20 代 ...
- 【NOIP2017 D1 T1 小凯的疑惑】
题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...
- [暴力题解&&考试反思] 双十一欢乐赛(联赛膜你测试32)
前言: 今天考试很迷糊.从7点考到11点半,我大概从7点睡到9点.隐隐约约看到旁边的狗哥敲了好几个题,我才开始写代码.然后因为还是很困,而且T1迷迷糊糊调了好长时间,T3T4的暴力就懒的写了... 估 ...
- 题解P3951【小凯的疑惑】
相信参加OI的oiers都是数学高手吧 我好像不是 (滑稽 那应该大家都接触过邮资问题吧! 所谓邮资问题,就类似于这一题,给定a和b两种邮资数,求最大的不能凑出的邮资 数.这里给出公式:最大的不能集出 ...
- NOIP2017 Day1 T1 小凯的疑惑
题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小凯想知道在无法准确支付的物品中,最贵的价 ...
- 7.20试机测 T3 阶乘之和 暴力AC题解
7.20试机测 T3 阶乘之和 暴力AC题解 题外话:此乃本蒟蒻发表的第一篇题解,大家多多关照,支持一下,谢谢 题面 3.阶乘之和(sum.pas/in/out) 问题描述: 给定一个非负整数 n, ...
随机推荐
- WinForm控件常用设置(转)
本来想自己整理一份,但找到了一份挺全的,就直接用到直接找吧 A0 ---- 通用A1 ---- Form 类A2 ---- Control 类A3 ---- MessageBox 类A4 ---- B ...
- 理解ASP.NET Core - [04] Host
注:本文隶属于<理解ASP.NET Core>系列文章,请查看置顶博客或点击此处查看全文目录 本文会涉及部分 Host 相关的源码,并会附上 github 源码地址,不过为了降低篇幅,我会 ...
- UVA 1599 Ideal Path(双向bfs+字典序+非简单图的最短路+队列判重)
https://vjudge.net/problem/UVA-1599 给一个n个点m条边(2<=n<=100000,1<=m<=200000)的无向图,每条边上都涂有一种颜色 ...
- jmeter调度器的使用
前言 使用jmeter 做压测的时候,希望对一个接口持续压测 10 分钟或者半小时,可以使用调度器设置持续压测时间. https://www.cnblogs.com/yoyoketang/p/1415 ...
- 解决navicat 导出excel数字为科学计数法问题
1.原因分析 用程序导出的csv文件,当字段中有比较长的数字字段存在时,在用excel软件查看csv文件时就会变成科学技术法的表现形式. 其实这个问题跟用什么语言导出csv文件没有关 ...
- libcurl 概述(翻译)
l名称 libcurl 客户端 URL 传输 描述 这是一个如何使用libcurl进行C语言编程的简短概述.这里提到的每个功能都有特定的手册页.还有 libcurl-easy 手册页,libcurl- ...
- 『Python』matplotlib共享绘图区域坐标轴
1. 共享单一绘图区域的坐标轴 有时候,我们想将多张图形放在同一个绘图区域,不想在每个绘图区域只绘制一幅图形.这时候,就可以借助共享坐标轴的方法实现在一个绘图区域绘制多幅图形的目的. import n ...
- Hbuilder 生成移动App资源升级包
建立文件夹www,将需要更新的文件放置在里面. 将manifest.json文件中version字段的版本修改为新编号. 在文件夹www外建立文件update.xml,内容如下: <?xml v ...
- [转载20131024]Nginx服务器漏洞的利用和修复方法
本文主要分为两大部分,第一部分介绍了Nginx的一些常见安全漏洞的形成原因.利用方法,并给出了相应的解决办法;第二部分介绍了Nginx安全加固时需要关注的主要内容. Nginx(发音同engine x ...
- Android Kotlin协程入门
Android官方推荐使用协程来处理异步问题.以下是协程的特点: 轻量:单个线程上可运行多个协程.协程支持挂起,不会使正在运行协程的线程阻塞.挂起比阻塞节省内存,且支持多个并行操作. 内存泄漏更少:使 ...