前言:

数学题,对于我这种菜B还是需要多磨啊

Simple

首先它问不是好数的数量,可以转化为用总数量减去是好数的数量。

求“好数”的数量:

由裴蜀定理得,如果某个数\(i\)不能整除\(gcd(n,m)\),那么一定不是好数。

所以,我们把\(n,m,q\)分别除以\(gcd(n,m)\),是不影响得出的“好数”数量的。

好,那么现在\(n,m\)就互质了。

现在,就把问题转化为了(用比较形象化的语言来说,就是)有\(n,m\)互质,求\([1,q]\)中有多少个数能被若干个\(n,m\)相加之后拼起来。

这个东西简单枚举两维的话,复杂度显然无法接受。我们可以考虑只枚举一维。

设\(n\)的系数是\(x\),\(m\)的系数是\(y\),且\(n\)小于\(m\)。

即\(n*x+m*y=c\);

那么就可以枚举\(y\),求\(x\)的数量即可。

边界问题很重要。

我们考虑y的边界,因为要算\((c-m*y)/n\),所以\(m*y<=c\);

然后会发现一个问题,如下图。

上面的长线段代表某个能被拼成的数,我们可以发现,如果枚举\(m\)的个数等于\(4\)时,这个数会被计算到。枚举\(m\)的个数等于\(0\),即\(n\)的个数等于\(5\)时,这个数又会被计算到,就会算重。

那么怎么去重呢?

我们会发现,因为\(n,m\)互质,上面的情况发生且只会发生在枚举的\(y\)大于等于\(n\)时才会出现。

所以就有了y的第二个边界,\(y<n\);

代码如下:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n,m,q;
ll gcd(ll x,ll y){
return y==0 ? x : gcd(y,x%y) ;
}
void Solve(){
int T;scanf("%d",&T);
while(T--){
scanf("%lld%lld%lld",&n,&m,&q);
ll ans=q;
if(n>m) swap(n,m);
ll ss=gcd(n,m);
n/=ss;
m/=ss;
q/=ss;
for(register int i=0;i*m<=q&&i<n;++i) ans-=(q-1ll*i*m)/n+1;
printf("%lld\n",ans+1);//ans+1的原因?
}
}
int main(){
freopen("simple.in","r",stdin);
freopen("simple.out","w",stdout);
Solve();
return 0;
}

这里还要注意一个点,最后\(ans\)要加一,原因是\(x=0,y=0\)的情况,这是不在\([1,q]\)区间中的,相当于多减去一个,然后就要加回来。

2.luogu P3951 小凯的疑惑 / [蓝桥杯2013省]买不到的数目

链接

这个题放在D1T1是来恶心人的吗。。。找到规律就秒切,找不到规律就心态炸裂?

希望今年别出这种题。

某工具人学长 所言,这玩意叫赛瓦维斯特定理。

emmm。。。动动的证明看懂了一部分

后来又看了这个链接疑似挂掉的博客

发现竟然折磨简单。

然后。。。我自己写的证明就先咕了吧

联赛膜你测试20 T1 Simple 题解 && NOIP2017 小凯的疑惑 题解(赛瓦维斯特定理)的更多相关文章

  1. 题解 P3951 小凯的疑惑

    P3951 小凯的疑惑 数论极菜的小萌新我刚看这题时看不懂exgcd做法的题解,后来在网上找到了一篇博客,感觉代码和推导都更加清新易懂,于是在它的基础上写了题解qwq 分析 两数互质,且有无限个,想到 ...

  2. 题解【洛谷P3951】[NOIP2017]小凯的疑惑

    题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...

  3. [CSP-S模拟测试]:小奇挖矿2(DP+赛瓦维斯特定理)

    题目背景 小奇飞船的钻头开启了无限耐久+精准采集模式!这次它要将原矿运到泛光之源的矿石交易市场,以便为飞船升级无限非概率引擎. 题目描述 现在有$m+1$个星球,从左到右标号为$0$到$n$,小奇最初 ...

  4. 2021.07.20 P3951 小凯的疑惑(最大公因数,未证)

    2021.07.20 P3951 小凯的疑惑(最大公因数,未证) 重点: 1.最大公因数 题意: 求ax+by最大的表示不了的数(a,b给定 x,y非负). 分析: 不会.--2021.07.20 代 ...

  5. 【NOIP2017 D1 T1 小凯的疑惑】

    题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...

  6. [暴力题解&&考试反思] 双十一欢乐赛(联赛膜你测试32)

    前言: 今天考试很迷糊.从7点考到11点半,我大概从7点睡到9点.隐隐约约看到旁边的狗哥敲了好几个题,我才开始写代码.然后因为还是很困,而且T1迷迷糊糊调了好长时间,T3T4的暴力就懒的写了... 估 ...

  7. 题解P3951【小凯的疑惑】

    相信参加OI的oiers都是数学高手吧 我好像不是 (滑稽 那应该大家都接触过邮资问题吧! 所谓邮资问题,就类似于这一题,给定a和b两种邮资数,求最大的不能凑出的邮资 数.这里给出公式:最大的不能集出 ...

  8. NOIP2017 Day1 T1 小凯的疑惑

    题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小凯想知道在无法准确支付的物品中,最贵的价 ...

  9. 7.20试机测 T3 阶乘之和 暴力AC题解

    7.20试机测  T3 阶乘之和 暴力AC题解 题外话:此乃本蒟蒻发表的第一篇题解,大家多多关照,支持一下,谢谢 题面 3.阶乘之和(sum.pas/in/out) 问题描述: 给定一个非负整数 n, ...

随机推荐

  1. v-for列表渲染之数组变动检测

    1.简单举一个v-for列表渲染例子 <template> <div> <ul> <li v-for="item in items"> ...

  2. 分布式必备理论基础:CAP和BASE

    大家好,我是老三,今天是没有刷题的一天,心情愉悦,给大家分享两个简单的知识点:分布式理论中的CAP和BASE. CAP理论 什么是CAP CAP原则又称CAP定理,指的是在一个分布式系统中,Consi ...

  3. 羽夏看Win系统内核——简述

    写在前面   此系列是本人一个字一个字码出来的,包括示例和实验截图.由于系统内核的复杂性,故可能有错误或者不全面的地方,如有错误,欢迎批评指正,本教程将会长期更新. 如有好的建议,欢迎反馈.码字不易, ...

  4. 在 vue-cli 项目中 使用elementUI 的“自定义主题”功能

    1.安装elementUI $ npm i element-ui -S 2.安装主题工具 npm i element-theme -g 3.安装chalk主题 npm 安装 npm i element ...

  5. CodeForce-702C Cellular Network(查找)

    Cellular Network CodeForces - 702C 给定 n (城市数量) 和 m (灯塔数量): 给定 a1~an 城市坐标: 给定 b1~bm 灯塔坐标: 求出灯塔照亮的最小半径 ...

  6. 成本降低40%、资源利用率提高20%的 AI 应用产品云原生容器化之路

    作者 郭云龙,腾讯云高级工程师,目前就职于 CSIG 云产品三部-AI 应用产品中心,现负责中心后台业务框架开发. 导语 为了满足 AI 能力在公有云 SaaS 场景下,服务和模型需要快速迭代交付的需 ...

  7. adobe media encoder cc 2018无法打开,报错0xc0000005

    在我这里是因为显卡的原因 下载NVIDIA然后打开NVIDIA控制面板,在里面选择软件的显卡,挨个试就行, 还不行就在设备管理器中将多余的先禁用,试一试

  8. 『Python』matplotlib实现动画效果

    一般而言,在绘制复杂动画时,主要借助模块animation来完成 import numpy as np import matplotlib.pyplot as plt import matplotli ...

  9. Selenium+Tesseract-OCR智能识别验证码爬取网页数据

    1.项目需求描述 通过订单号获取某系统内订单的详细数据,不需要账号密码的登录验证,但有图片验证码的动态识别,将获取到的数据存到数据库. 2.整体思路 1.通过Selenium技术,无窗口模式打开浏览器 ...

  10. P1791-[国家集训队]人员雇佣【最大权闭合图】

    正题 题目链接:https://www.luogu.com.cn/problem/P1791 题目大意 有\(n\)个人,雇佣第\(i\)个需要\(A_i\)的费用,对于\(E_{i,j}\)表示如果 ...