P4569 [BJWC2011]禁忌
题意简述:给出大小为 \(n\) 的字典 \(s\)。设函数 \(g(t)\) 表示 \(t\) 最多能被分割成的单词个数。等概率随机生成长度为 \(len\) 的字符串 \(T\),求 \(E(g(t))\)。
hot tea. 比较像 P3193 [HNOI2008]GT考试。
首先对 \(s_i\) 建出 ACAM,然后在上面 DP。设 \(f_{i,j}\) 表示关于所有 \(T\)(\(|T|=i\) 且 \(T\) 在 ACAM 上能跑到状态 \(j\))的一个东西。那么究竟是表示什么呢?
记 \(P=\dfrac{f_{i,j}}{a}\);\(p\) 为 \(j\) 的所有子节点,即 \(p\in son_j\)。
错误思路:如果 \(f_{i,j}\) 单纯表示字符串 \(T\) 的 “概率”(即 \(\dfrac{num(T)}{a^i}\)),那么转移与统计答案就是:如果 \(p\) 是终止节点,将 \(ans\) 加上 \(P\);同时将所有 \(f_{i+1,p}\) 加上 \(P\)。不错,如果 \(g(T)\) 表示的是所有单词 \(s_i\) 在 \(T\) 中出现次数之和,那么这样是没错的,可惜不是,因为会有重复计算,即若字典 \(s=\{\texttt{ab,bc}\}\),那么 \(T=\{\texttt{abc}\}\) 会算入两次贡献(样例中也有提到这种情况)。
正确思路:注意到这个 "最多" 有点麻烦,不过还是有处理的办法:如果 \(p\) 是一个终止节点,那么在下传概率的时候,将 \(f_{i+1,0}\)(而不是 \(f_{i+1,p}\))加上 \(P\)。如果成功匹配一个单词,就必须从头开始匹配。
注意到 \(\sum |s_i|\) 很小,只有 \(75\)。这也意味着 \(j\) 的范围只有 \(75\)。因此,用矩阵快速幂加速 DP 即可,别忘了在矩阵中留个位置记录 \(ans\)。
总时间复杂度 \(\mathcal{O}((\sum |s_i|)^3\log len)\)。
/*
Powered by C++11.
Author : Alex_Wei.
*/
#include <bits/stdc++.h>
using namespace std;
//#pragma GCC optimize(3)
//#define int long long
using ld = long double;
const int N=77;
const int S=26;
int sz,al,son[N][S],fa[N],ed[N];
void ins(string s){
int p=0;
for(char it:s){
if(!son[p][it-'a'])son[p][it-'a']=++sz;
p=son[p][it-'a'];
} ed[p]=1;
}
void build(){
queue <int> q;
for(int i=0;i<al;i++)if(son[0][i])q.push(son[0][i]);
while(!q.empty()){
int t=q.front(); q.pop();
for(int i=0;i<al;i++)
if(son[t][i])q.push(son[t][i]),fa[son[t][i]]=son[fa[t]][i];
else son[t][i]=son[fa[t]][i];
ed[t]|=ed[fa[t]];
}
}
struct mat{
ld a[N][N];
friend mat operator * (mat x,mat y){
mat z; mem(z.a,0);
for(int i=0;i<=sz;i++)
for(int j=0;j<=sz;j++)
for(int k=0;k<=sz;k++)
z.a[i][j]+=x.a[i][k]*y.a[k][j];
return z;
}
}base,ans;
int n,len;
int main(){
cin>>n>>len>>al;
for(int i=0;i<n;i++){
string s;
cin>>s,ins(s);
} build();
for(int i=0;i<=sz;i++)
for(int j=0;j<al;j++){
int p=son[i][j];
if(ed[p])base.a[i][0]+=1.0/al,base.a[i][sz+1]+=1.0/al;
else base.a[i][p]+=1.0/al;
}
sz++,ans.a[0][0]=base.a[sz][sz]=1;
while(len){
if(len&1)ans=ans*base;
base=base*base,len>>=1;
} printf("%.10Lf\n",ans.a[0][sz]);
return 0;
}
P4569 [BJWC2011]禁忌的更多相关文章
- 洛谷 P4569 - [BJWC2011]禁忌(AC 自动机+矩阵乘法)
题面传送门 又好久没做过 AC 自动机的题了,做道练练手罢( 首先考虑对于某个固定的字符串怎样求出它的伤害,我们考虑贪心,每碰到出现一个模式串就将其划分为一段,最终该字符串的代价就是划分的次数.具体来 ...
- 题解 洛谷 P4569 【[BJWC2011]禁忌】
考虑用\(AC\)自动机来解决本题这样的多字符串匹配问题. 要最大化魔法分割后得到的禁忌串数目,最优情况肯定为在一个串中每个禁忌串的右端点进行分割.对应到\(AC\)自动机上,就是匹配到一个禁忌串后, ...
- BZOJ2553 [BJWC2011]禁忌
传送门 Description 给你前alphabet个小写字母组成的字符集, 以及n个单词, 定义一个串s的禁忌值为 \(\sum_{i } [s[i] == Taboo[i]]\) , Tab ...
- BJWC2011 禁忌
题目链接 题解 多模式匹配首先建 AC 自动机,看到 \(len \le 10^9\) 想到矩阵乘法优化. 朴素 DP 关于分割的最大值,可以贪心,只要走到一个能匹配串的点立刻返回根继续匹配就行,一定 ...
- [BJWC2011]禁忌 AC 自动机 概率与期望
#include<cstdio> #include<algorithm> #include<cstring> #include<string> #inc ...
- DP 优化方法大杂烩 & 做题记录 I.
标 * 的是推荐阅读的部分 / 做的题目. 1. 动态 DP(DDP)算法简介 动态动态规划. 以 P4719 为例讲一讲 ddp: 1.1. 树剖解法 如果没有修改操作,那么可以设计出 DP 方案 ...
- ACAM 题乱做
之前做了不少 ACAM,不过没怎么整理起来,还是有点可惜的. 打 * 的是推荐一做的题目. I. *CF1437G Death DBMS 见 我的题解. II. *CF1202E You Are Gi ...
- 「刷题笔记」AC自动机
自动AC机 Keywords Research 板子题,同luoguP3808,不过是多测. 然后多测不清空,\(MLE\)两行泪. 板子放一下 #include<bits/stdc++.h&g ...
- [No000052]大蒜怎么吃最美容?吃大蒜的功效及禁忌
大蒜是最常见的香辛调味料,它被称为天然抗生素,富含大蒜素等多种营养物质和抗氧化剂,具有多种美肤美容作用. 大蒜的5种美容功效 1.除皱.大蒜里的某些成分,有类似维生素E与维生素C的抗氧化.防衰老特性, ...
随机推荐
- pycharm中的terminal和Windows命令提示符有什么区别?二者用pip安装的包是不是位于相同位置?
那要看pycharm使用了什么shell,可以在设置->工具->终端里查看shell path.如果使用的是cmd.exe那就没区别.pycharm终端和Windows命令提示符用pip安 ...
- [技术博客]使用pylint实现django项目的代码风格检查
使用pylint实现django项目的代码风格检查 前言 一个项目大多都是由一个团队来完成,如果没有统一的代码规范,那么每个人的代码的风格必定会有很大的差别.且不说会存在多个人同时开发同一模块的情 ...
- 【二食堂】Alpha - Scrum Meeting 8
Scrum Meeting 8 例会时间:4.18 11:40 - 12:10 进度情况 组员 昨日进度 今日任务 李健 1. 实体的添加和关系的添加实现的有bug,柴博和刘阳进行了帮助issue 1 ...
- TDengine在数益工联工业物联采集平台建设中的初步实践
作者:易永耀 夏杭泰 邓炜兴 公司介绍 数益工联致力于打造基于数据流+价值流的离散制造业数字化软件:应用新一代的物联网技术与丰富的现场交互手段,融合工业工程精益思想,为离散制造业客户的数字化升级提供从 ...
- spring security实现简单的url权限拦截
在一个系统中,权限的拦截是很常见的事情,通常情况下我们都是基于url进行拦截.那么在spring security中应该怎么配置呢. 大致步骤如下: 1.用户登录成功后我们需要拿到用户所拥有的权限,并 ...
- 0x04
二分: while(l<r) { int mid=(l+r)/2; if(符合条件) r=mid; else l=mid+1; } 固定下二分的写法: 终止条件:l==r: 取mid=(l+r) ...
- sublime text c++ makefile
http://blog.csdn.net/wangdan1600/article/details/43857195 http://blog.csdn.net/artprog/article/detai ...
- VUE项目实现主题切换
需求是 做一个深色主题和浅色主题切换的效果 方法一 多套css 这个方法也是最简单,也是最无聊的. <!-- 中心 --> <template> 动态获取父级class名称,进 ...
- Django settings.py设置 DEBUG=False后静态文件无法加载解决
解决办法: settings.py 文件 DEBUG = False STATIC_ROOT = os.path.join(BASE_DIR,'static') #新增 urls.py文件(项目的) ...
- 攻防世界 WEB 高手进阶区 XCTF Web_php_unserialize Writeup
攻防世界 WEB 高手进阶区 XCTF Web_php_unserialize Writeup 题目介绍 题名考点 PHP反序列化漏洞 正则匹配 Writeup <?php class Demo ...