RDD的缓存/持久化

缓存解决的问题

缓存解决什么问题?-解决的是热点数据频繁访问的效率问题

在Spark开发中某些RDD的计算或转换可能会比较耗费时间,

如果这些RDD后续还会频繁的被使用到,那么可以将这些RDD进行持久化/缓存,

这样下次再使用到的时候就不用再重新计算了,提高了程序运行的效率。

import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel
import org.apache.spark.{SparkConf, SparkContext} object Demo16Cache {
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("****").setMaster("local")
val sc: SparkContext = new SparkContext(conf)
val linesRDD: RDD[String] = sc.textFile("spark/data/words.txt")
//加入缓存的三种方式
//方式一
linesRDD.cache()//将常用的RDD放入缓存中,增加效率
//StorageLevel.MEMORY_ONLY 默认只放在缓存中 //方式二
//linesRDD.persist()
//def persist(): this.type = persist(StorageLevel.MEMORY_ONLY) //指定缓存存储方式
linesRDD.persist(StorageLevel.MEMORY_AND_DISK)
/**
* 缓存的存储方式:推荐使用MEMORY_AND_DISK
* object StorageLevel {
* val NONE = new StorageLevel(false, false, false, false)
* val DISK_ONLY = new StorageLevel(true, false, false, false)
* val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)
* val MEMORY_ONLY = new StorageLevel(false, true, false, true)
* val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)
* val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
* val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)
* val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
* val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)
* val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
* val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2)
* val OFF_HEAP = new StorageLevel(true, true, true, false, 1)
*/ linesRDD.flatMap(word => word)
.groupBy(word => word)
.map(l => {
val word = l._1
val cnt = l._2.size
word + "," + cnt
}).foreach(println) val wordRDD: Unit = linesRDD.map(word => word)
.foreach(println) //释放缓存
linesRDD.unpersist()
}
}

RDD中的checkpoint

RDD数据可以持久化到内存中,虽然是快速的,但是不可靠

也可以把数据放在磁盘上,也并不是完全可靠的,

我们可以把缓存数据放到我的HDFS中,借助HDFS的高可靠,高可用以及高容错来保证数据安全

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel object Demo17CheckPoint {
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("spark").setMaster("local")
val sc: SparkContext = new SparkContext(conf)
val linesRDD: RDD[String] = sc.textFile("spark/data/words.txt") /**
* RDD数据可以持久化到内存中,虽然是快速的,但是不可靠
* 也可以把数据放在磁盘上,也并不是完全可靠的
* 我们可以把缓存数据放到我的HDFS中,借助HDFS的高可靠,高可用以及高容错来保证数据安全
*
*/
//设置HDFS的目录
sc.setCheckpointDir("spark/data/checkPoint")
//对需要缓存的RDD进行checkPoint
linesRDD.checkpoint()
linesRDD.flatMap(word => word)
.groupBy(word => word)
.map(l => {
val word = l._1
val cnt = l._2.size
word + "," + cnt
}).foreach(println) val wordRDD: Unit = linesRDD.map(word => word)
.foreach(println)
} }

RDD的缓存的更多相关文章

  1. Spark RDD概念学习系列之RDD的缓存(八)

      RDD的缓存 RDD的缓存和RDD的checkpoint的区别 缓存是在计算结束后,直接将计算结果通过用户定义的存储级别(存储级别定义了缓存存储的介质,现在支持内存.本地文件系统和Tachyon) ...

  2. sparkRDD:第4节 RDD的依赖关系;第5节 RDD的缓存机制;第6节 DAG的生成

    4.      RDD的依赖关系 6.1      RDD的依赖 RDD和它依赖的父RDD的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency ...

  3. RDD(八)——缓存与检查点

    RDD通过persist方法或cache方法可以将前面的计算结果缓存,默认情况下 persist() 会把数据以序列化的形式缓存在 JVM 的堆空间中. 但是并不是这两个方法被调用时立即缓存,而是触发 ...

  4. Spark核心RDD、什么是RDD、RDD的属性、创建RDD、RDD的依赖以及缓存、

    1:什么是Spark的RDD??? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行 ...

  5. RDD缓存

    RDD的缓存 Spark速度非常快的原因之一,就是在不同操作中可以在内存中持久化或缓存数据集.当持久化某个RDD后,每一个节点都将把计算的分片结果保存在内存中,并在对此RDD或衍生出的RDD进行的其他 ...

  6. Spark RDD详解 | RDD特性、lineage、缓存、checkpoint、依赖关系

    RDD(Resilient Distributed Datasets)弹性的分布式数据集,又称Spark core,它代表一个只读的.不可变.可分区,里面的元素可分布式并行计算的数据集. RDD是一个 ...

  7. RDD:基于内存的集群计算容错抽象(转)

    原文:http://shiyanjun.cn/archives/744.html 该论文来自Berkeley实验室,英文标题为:Resilient Distributed Datasets: A Fa ...

  8. Spark RDD Operations(2)

    处理数据类型为Value型的Transformation算子可以根据RDD变换算子的输入分区与输出分区关系分为以下几种类型. 1)输入分区与输出分区一对一型. 2)输入分区与输出分区多对一型. 3)输 ...

  9. Spark RDD概念学习系列之RDD的checkpoint(九)

     RDD的检查点 首先,要清楚.为什么spark要引入检查点机制?引入RDD的检查点?  答:如果缓存丢失了,则需要重新计算.如果计算特别复杂或者计算耗时特别多,那么缓存丢失对于整个Job的影响是不容 ...

随机推荐

  1. html网页乱码

    html乱码原因与网页乱码解决方法   html乱码原因与网页乱码解决方法,浏览器浏览网页内容出现乱码符合解决篇(html中文乱码) 造成html网页乱码原因主要是html源代码内中文字内容与html ...

  2. 『Python』matplotlib坐标轴应用

    1. 设置坐标轴的位置和展示形式 import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl mpl.use ...

  3. Nresource服务之接口缓存化

    1. 背景 Nresource服务日均4.5亿流量,考虑到未来流量急增场景,我们打算对大流量接口进行缓存化处理:根据服务管理平台数据统计显示getUsableResoureCount接口调用量很大,接 ...

  4. JS获取contextPath的方法

    function getContextPath() { var pathName = document.location.pathname;    var index = pathName.subst ...

  5. 多图详解万星 Restful 框架原理与实现

    rest框架概览 我们先通过 go-zero 自带的命令行工具 goctl 来生成一个 api service,其 main 函数如下: func main() { flag.Parse() var ...

  6. 7.JVM调优-方法区,堆,栈调优详解

    通常我们都知道在堆空间新生代Eden区满了,会触发minor GC, 在老年代满了会触发full GC, 触发full GC会导致Stop The World, 那你们知道还有一个区域满了一会触发Fu ...

  7. Python - __all__ 变量

    import * 当我们向文件导入某个模块时,导入的是该模块中那些名称不以下划线(单下划线 _ 或者双下划线 __ )开头的变量.函数和类 因此,如果不想模块文件中的某个对象被引入到其它文件中使用,可 ...

  8. 教你轻松构建基于 Serverless 架构的小程序

    前言 自 2017 年第一批小程序上线以来,越来越多的移动端应用以小程序的形式呈现.小程序触手可及.用完即走的优点,大大降低了用户的使用负担,也使小程序得到了广泛的传播.在阿里巴巴,小程序也被广泛地应 ...

  9. macbook air m1上传文件到github

    一,首先安装git,打开ssh文件里的id_rsa.pub,然后复制所有内容. 二,github上申请自己的账号,右上角settings里选择SSH and GPG keys,点击new ssh ke ...

  10. pymysql基础

    一,基本使用 倒入模块 import pymysql conn=pymysql.connect( host="数据库地址,本机是localhost,别的机器是ip", user=& ...