hdu 2841 Visible Trees(容斥)
If two trees and Sherlock are in one line, Farmer Sherlock can only see the tree nearest to him.
InputThe first line contains one integer t, represents the number of test cases. Then there are multiple test cases. For each test case there is one line containing two integers m and n(1 ≤ m, n ≤ 100000)OutputFor each test case output one line represents the number of trees Farmer Sherlock can see.Sample Input
2
1 1
2 3
Sample Output
1
5
题解:
容斥原理
题意:给n*m的矩阵有点,左下角的点为(1,1),右上角的点(n,m),(其实转回来也是没影响的即m*n),一个人站在(0,0)看这些点,在一条直线的视线上,它只能看到最前面的那个点,后面的点将会被档住他看不到,问你,这个人一共能看到多少个点。
这个问题只要画一下图不难发现,如果一个点(x,y),x和y有非1的公约数z,那么他们其实可以一起缩小为(x/z,y/z),试着把这两个点和(0,0)连线,发现他们其实是同一条直线,而(x/z,y/z)
在前面,所以其实(x,y)被挡住了看不到的,这启发了我们,如果我们找到了x和y的最大公约数g,那么(x/g,y/g)一定是这条直线上最前面的点,没有其他店能挡住他,他一定能被看到,而他后面的点都看不到,那么(x/g,y/g)满足的性质就是,这两个数字互质
从而得到一个结论,两个数字(x,y)如果两数互质,则可以被看到,如果不互质,则看不到,所以我们就是要找出所有的二元组(x,y)使他们互质
我们可以固定一个数字,用一个数来循环。例如矩阵为n*m,我们固定m,用n来循环,即1与[1,m]里面多少个数互质,2与[1,m]里面多少个数互质,3与[1,m]里面多少个数互质……n与[1,m]里面多少个数互质,把这些结果全部累加起来即可
所以问题的最后变为了,给定一个数字x,怎么找出它和1到y里面有多少个数互质呢?
两个数字互质,其实就是它们没有公共的质因子,反过来两个数字有公共的质因子则一定不互质,那么我们可以求反面,x与1到y里面多少个数字不互质,然后用y减去即可
在这里我们就用到了容斥原理:先找到有多少个数和x有1个公共的质因子,然后加上;再找到有多少个数与x有2个公共的质因子,然后减去;再找到有多少个数有多少个数与x有3个公共的质因子,然后加上……最后得到的个数,就是有多少个数与x不互质
因为容斥原理一个最基本的准则就是——
要计算几个集合并集的大小,我们要先将所有单个集合的大小计算出来,然后减去所有两个集合相交的部分,再加回所有三个集合相交的部分,再减去所有四个集合相交的部分,依此类推,一直计算到所有集合相交的部分。(奇数加,偶数减)
AC代码:
1 #include <cstdio>
2 #include <cstring>
3 #include <cmath>
4 #include <vector>
5 #include <queue>
6 #include <algorithm>
7 using namespace std;
8 #define MAX 100010
9
10 bool p[MAX];
11 vector<int>fac[MAX];//保存每个数字带有的质因子
12
13 void init()
14 {
15 for(int i=0; i<MAX; i++) fac[i].clear();
16 memset(p,false,sizeof(p));
17 for(int i=2; i<MAX; i++)
18 if(!p[i]) //i是质因子
19 {
20 fac[i].push_back(i);
21 for(int j=i+i; j<MAX; j+=i)
22 {
23 p[j]=true; //不是质因子
24 fac[j].push_back(i); //j这个数字都含有质因子i
25 }
26 }
27 }
28
29 int cal(int n , int m)
30 {
31 int size=(int)fac[n].size(); //得到n这个数字有多少个质因子
32 int maxs=1<<size; //从中选一些质因子,就是生成子集,子集最多个数
33 int Count=0; //记录n与1到m这m个数中多少个数互质
34 for(int s=1; s<maxs; s++) //枚举子集,不能有空集所以从1开始
35 {
36 int k=0 , num=0 , pro=1;
37 for(int i=0; i<size; i++)
38 if(s&(1<<i)) //有第i个质因子
39 {
40 num++; //计数
41 pro *= fac[n][i]; //乘上这个质因子
42 }
43 if( num&1 ) //选出了奇数个质因子,按照容斥原理加上
44 Count += m/pro;
45 else //选出了偶数个质因子,按照容斥原理减去
46 Count -= m/pro;
47 }
48 return m-Count;
49 }
50
51 int main()
52 {
53 int T,H,W;
54 init();//找出每个数字带有的质因子
55 scanf("%d",&T);
56 while(T--)
57 {
58 scanf("%d%d",&H,&W);
59 if(W>H) //交换可令循环次数减少
60 { H=H^W; W=H^W; H=H^W;}
61 long long ans=H;
62 for(int w=2; w<=W; w++)
63 ans += cal(w,H);
64 printf("%I64d\n",ans); //注意输出格式不能用%lld
65 }
66 return 0;
67 }
hdu 2841 Visible Trees(容斥)的更多相关文章
- C - Visible Trees HDU - 2841 -莫比乌斯函数-容斥
C - Visible Trees HDU - 2841 思路 :被挡住的那些点(x , y)肯定是 x 与 y不互质.能够由其他坐标的倍数表示,所以就转化成了求那些点 x,y互质 也就是在 1 - ...
- HDU 2841 Visible Trees(容斥定理)
Visible Trees Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) To ...
- HDU 2841 Visible Trees(容斥)题解
题意:有一块(1,1)到(m,n)的地,从(0,0)看能看到几块(如果两块地到看的地方三点一线,后面的地都看不到). 思路:一开始是想不到容斥...后来发现被遮住的地都有一个特点,若(a,b)有gcd ...
- HDU 2841 Visible Trees 数论+容斥原理
H - Visible Trees Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u S ...
- HDU 2841 Visible Trees(数论)
标题效果:给你个m*n方格,广场格从(1,1)开始. 在树中的每个点,然后让你(0,0)点往下看,问:你能看到几棵树. 解题思路:假设你的视线被后面的树和挡住的话以后在这条线上的树你是都看不见的啊.挡 ...
- hdu 2841 Visible Trees 容斥原理
Visible Trees Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Pr ...
- HDU 2841 Visible Trees(莫比乌斯反演)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2841 题意:给n*m的矩阵(从(1,1)开始编号)格子,每个格子有一棵树,人站在(0,0)的位置,求可 ...
- hdu 2841 Visible Trees
/** 大意: 求[1,m], [1,n] 之间有多少个数互素...做了 1695 ,,这题就so easy 了 **/ #include <iostream> #include < ...
- HDU 5297 Y sequence 容斥 迭代
Y sequence 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5297 Description Yellowstar likes integer ...
随机推荐
- 【ZeyFraのJavaEE开发小知识01】@DateTimeFomat和@JsonFormat
@DateTimeFormat 所在包:org.springframework.format.annotation.DateTimeFormat springframework的注解,一般用来对Dat ...
- 并发\并行,同步\异步,阻塞\非阻塞,IO多路复用解释
并发.并行 并发:是指一个时间段内,有几个程序在同一个CPU上运行,但是任意时刻只有一个程序在CPU上运行.由于CPU的运行速度极快,可以在多个程序之间切换,这样造成一个假象就是多个程序同时在运行.并 ...
- 剑指 Offer 15. 二进制中1的个数
剑指 Offer 15. 二进制中1的个数 Offer 15 题目描述: 方法一:使用1逐位相与的方式来判断每位是否为1 /** * 方法一:使用1逐位与的方法 */ public class Off ...
- Linux速通 随笔整理
Linux速通 随笔整理 为了方便阅读,特整理了相关的学习笔记 零.大纲 一.系统安装 二.命令格式 三.文件管理 四.用户群组 五.文件处理 六.系统初始化及监控 七.硬盘初始化 八.网络原理
- ES系列(一):编译准备与server启动过程解析
ES作为强大的和流行的搜索引擎服务组件,为我们提供了方便的和高性能的搜索服务.在实际应用中也是用得比较爽,但如果能够更深入一点.虽然网上有许多的文章已经完整说明,ES是如何如何做到高性能,如何做到高可 ...
- Boltdb学习笔记之〇--概述
更多精彩内容,请关注微信公众号:后端技术小屋 看了boltdb也有一阵子了,看完之后总想写点什么,因为感觉到这可能是个不小的坑,所以迟迟没有动笔(没错我的拖延症又犯了..).最近有一种流行的说法:如果 ...
- JVM线上问题排查
前言 本文介绍服务器内运行的 Java 应用产生的 OOM 问题 和 CPU 100% 的问题定位 1. 内存 OOM 问题定位 某Java服务(比如进程id pid 为 3320)出现OOM,常见的 ...
- ts装饰器的用法,基于express创建Controller等装饰器
TS TypeScript 是一种由微软开发的自由和开源的编程语言.它是 JavaScript 的一个超集,而且本质上向这个语言添加了可选的静态类 型和基于类的面向对象编程. TypeScript 扩 ...
- PHP配置 2. 日志相关配置
例如,在disable_functions,定义禁用phpinfo函数, # vim /usr/local/php/etc/php.ini disable_functions=phpinfo,eval ...
- vue 折线柱状图
需求:折线柱状图实现,显示不同提示,颜色,标记等等. 图例: 实现: <template> <div class="transaction-barline"> ...