【BZOJ2067】[Poi2004]SZN 二分+树上贪心
【BZOJ2067】[Poi2004]SZN
Description
Input
Output
Sample Input
7 8
4 5
5 6
1 2
3 2
9 8
2 5
5 8
Sample Output
HINT
题解:第一问结论好重要啊。
设一个点的度数为d[i],我们统计多少条路径的最高点是这个点。对于非根的点,它肯定有一条路是从父亲那里来的,这条路还能延伸至它的一个儿子。那么对于剩下的儿子,将他们两两配对,剩余的单算,所以这个点对答案的贡献就是$\lceil\frac {d[i]-2} 2\rceil = \lfloor \frac {d[i]-1} 2 \rfloor$。对于根节点,它的贡献是$\lceil\frac {d[1]} 2\rceil$,所以$ans=1+\sum\limits_{i=1}^n\lfloor \frac {d[i]-1} 2 \rfloor$。
第二问的思路与第一问类似,容易想到先二分答案limit,然后令f[i]表示i到父亲那条路径的最短长度是多少。那么f[i]怎么求呢?我们将i的所有儿子的f值拿出来排序,发现i的f值可以二分得到。假如f[i]=f[j]+1,那么我们将j去掉,其余的f值从不断取出最大的和最小的两两配对,如果所有配对后的路径长度都<=limit,则这是一个合法的f值,继续二分即可。
注意:如果一个点的儿子个数是奇数,那么我们需要再添一个f值为0的儿子。根节点的f值需要特殊处理。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=10010;
int n,m,ans,cnt,lim,flag;
int to[maxn<<1],next[maxn<<1],head[maxn],d[maxn];
int g[maxn],f[maxn];
inline void add(int a,int b)
{
to[cnt]=b,next[cnt]=head[a],head[a]=cnt++;
}
bool check(int x)
{
int i,j;
for(i=1,j=m;i<j;i++,j--)
{
if(i==x) i++;
if(j==x) j--;
if(g[i]+g[j]>lim) return 0;
}
return 1;
}
void dfs(int x,int fa)
{
int i;
for(i=head[x];i!=-1;i=next[i]) if(to[i]!=fa) dfs(to[i],x);
for(m=0,i=head[x];i!=-1;i=next[i]) if(to[i]!=fa) g[++m]=f[to[i]]+1;
if(x==1)
{
sort(g+1,g+m+1);
flag&=check((m&1)?m:0);
return ;
}
if(!(m&1)) g[++m]=0;
sort(g+1,g+m+1);
int l=1,r=m+1,mid;
while(l<r)
{
mid=(l+r)>>1;
if(g[mid]+1<=lim&&check(mid)) r=mid;
else l=mid+1;
}
if(r==m+1) flag=0;
f[x]=g[r];
}
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
int main()
{
n=rd();
int i,a,b,l=1,r=n;
memset(head,-1,sizeof(head));
for(i=1;i<n;i++) a=rd(),b=rd(),add(a,b),add(b,a),d[a]++,d[b]++;
for(ans=i=1;i<=n;i++) ans+=(d[i]-1)>>1;
while(l<r)
{
flag=1,lim=(l+r)>>1,dfs(1,0);
if(flag) r=lim;
else l=lim+1;
}
printf("%d %d",ans,r);
return 0;
}
【BZOJ2067】[Poi2004]SZN 二分+树上贪心的更多相关文章
- bzoj 2525: [Poi2011]Dynamite【二分+树上贪心】
一眼二分.然后重点是树上贪心部分 长得像dp一样,设mn为子树内已炸点的最浅点,mx为子树内没有炸并且需要炸的最深点,然后转移直接从子树继承即可 然后是判断当前u点是否需要炸,当mx[u]+mn[u] ...
- bzoj 2067 [Poi2004]SZN——二分+贪心
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2067 最少的线段可以贪心地想出来.(结果还是写错了)就是偶数孩子可以自己配对,奇数孩子要带一 ...
- bzoj2067: [Poi2004]SZN
Description String-Toys joint-stock 公司需要你帮他们解决一个问题. 他们想制造一个没有环的连通图模型. 每个图都是由一些顶点和特定数量的边构成. 每个顶点都可以连向 ...
- 2067: [Poi2004]SZN——树上贪心+二分
题目大意: 给一棵树.求用最少的链覆盖这棵树(链不能相交),在这个基础上求最长的链最短可以是多少. n<=10000 题解: 肯定先处理第一问: 答案:$\sum_(du[i]-1)/2+1$ ...
- 【BZOJ2067】SZN(二分,动态规划,贪心)
[BZOJ2067]SZN(二分,动态规划,贪心) 题面 权限题额 Description String-Toys joint-stock 公司需要你帮他们解决一个问题. 他们想制造一个没有环的连通图 ...
- 【BZOJ2067】[Poi2004]SZN
题解: 比上一题水多了 首先树上贪心,肯定要考虑儿子 然后我们会发现这个东西就是要先把儿子连起来 然后如果儿子个数为奇数我们可以把这一条和它连向父亲的并在一起 由于根没有父亲所以要单独考虑 答案就是s ...
- Luogu 1084 NOIP2012 疫情控制 (二分,贪心,倍增)
Luogu 1084 NOIP2012 疫情控制 (二分,贪心,倍增) Description H 国有 n 个城市,这 n 个城市用 n-1 条双向道路相互连通构成一棵树, 1 号城市是首都, 也是 ...
- CodeForces - 363D --二分和贪心
题目:CodeForces - 363D 题意:给定n个学生,其中每个学生都有各自的私己钱,并且自己的私己钱只能用在自己买自行车,不能给别人. 给定m个自行车,每个自行车都有一个价格. 给定公有财产a ...
- 【BZOJ1816】[CQOI2010]扑克牌(二分,贪心)
[BZOJ1816][CQOI2010]扑克牌(二分,贪心) 题面 BZOJ 题解 看了一眼这题,怎么这么眼熟?woc,原来\(xzy\)的题目是搬的这道啊... 行,反正我考的时候也切了,这数据范围 ...
随机推荐
- map集合的循环示例
/** * 报警状态下拉列表信息 * @return * @throws Exception */ public String alarmStatusList() throws Exception { ...
- freeswitch 把SIP注册信息数据库从SQLITE 改为MYSQL的方法
实际线上应用中,在线注册人数超过4000 ,SQLITE就吃不消了,容易造成锁表,考虑转入MYSQL,查了下官网 超过转入了MYSQL. https://wiki.freeswitch.org/wik ...
- blender, 旋转和平移视图
旋转视图:MMB(鼠标中键) 平移视图:shift+MMB
- UIScrollView 滚动视图—IOS开发
转自:http://blog.csdn.net/iukey/article/details/7319314 UIScrollView 类负责所有基于 UIKit 的滚动操作. 一.创建 CGRect ...
- firewalld增加端口访问权限
firewall-cmd --zone=public --add-port=80/tcp --permanent firewall-cmd --reload
- JAVA第一个窗体小程序
import java.awt.*;public class Day1015_Frame{ public static void main(String[] args) { ...
- CodeForces 558D
Guess Your Way Out! II Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & ...
- VBA学习笔记(1)----VBA对象属性方法
'VBA对象 'VBA中的对象其实就是我们操作的具有方法.属性的excel中支持的对象 'Excel中的几个常用对象表示方法 '1.工作簿 ' Workbooks 代表工作簿集合,所有的工作簿,Wor ...
- 基于jquery的适合电子商务网站首页的图片滑块
今天给大家分享一款基于Sequence.js 的图片滑动效果,特别适合电子商务网站或者企业产品展示功能.带有图片缩率图,能够呈现全屏图片浏览效果.结合 CSS3 Transition 实现响应式的滑块 ...
- AM335x 添加 HUAWEI MU609 Mini PCIe Module,并用pppd 启动相关设备
kernel 的配置 kernel 3.2.0 make menuconfig Device Drivers ---> [*] USB support ---> <*> USB ...