CMOS DACs act as digitally controlled voltage dividers
Digital potentiometers, such as Analog Devices’ AD5160, make excellent digitally controlled voltage dividers in applications in which 8-bit resolution is acceptable. This Design Idea shows how to use a CMOS DAC as a voltage divider in applications requiring higher resolution.
Millions of CMOS R2R (resistor/two-resistor)-ladder DACs have found use in attenuator applications in which an external op amp acting as a current-to-voltage converter forces one current-output terminal to a virtual ground. The reference input to the DAC can be ac or dc as long as the op amp can produce the desired output voltage. A phase inversion is normal between input and output, so the circuit requires dual power supplies.
Figure 1 shows a way to rewire this simple circuit to avoid the phase inversion and to operate with a single supply. In this configuration, the DAC acts as a digitally programmable resistor, and the DAC’s code changes the effective resistance between the input voltage and the IOUT1 output-current terminal of the DAC. Figure 2shows a practical implementation using one-half of an Analog Devices AD5415 dual 12-bit current-output DAC operating as a voltage divider. This figure omits the DAC’s control lines for clarity. Op amp A1 forces the voltage on the IOUT2A output-current terminal to follow the voltage on the IOUT1A output-current terminal. This approach prevents a voltage differential from developing between these two bus lines, which would result in the application of different gate-source voltages across the internal DAC switches and a deterioration in the DAC linearity.
Wire the split-feedback resistors, RFB and R1, to produce a composite-feedback resistor equal in value to the DAC’s ladder impedance, R. For this arrangement the circuit-transfer function is VOUT/VIN=(R)/(REFF+R), where REFF is the effective DAC resistance that is under digital control. Its value is R(2n)/N, where n is the resolution of the DAC and N is the binary equivalent of the digital-input code. Substituting the second equation into the first and assuming zero DAC gain error, the circuit-transfer function for a 12-bit DAC reduces to VOUT/VIN=1/(1+4096/N). With all switches off, the effective impedance between the reference voltage and the IOUT1A terminal is infinite, so the output voltage starts at 0V when you load zeros into the DAC. The output voltage increases linearly with increasing code, ideally to approximately half the input with all ones applied to the DAC.
The threshold voltage of the DAC’s internal N-channel-CMOS switches limits the maximum value of the output voltage, so not all configurations can achieve the full code range. The switch-gate voltage remains at the VDD voltage, and the switch-source voltage rises with the voltage on IOUT1A. As this voltage increases, the on-resistance of the switches becomes large and indeterminate, leading to a flattening of the output voltage and the cessation of the circuit as a predictable voltage divider. For proper operation, the VDD voltage must be a few volts higher than the maximum output voltage—that is, half the input voltage. Otherwise, the input voltage must be less than two times the VDD voltage minus 3V. With a VDD voltage of 5V, the AD5415 operates linearly to approximately a 3.33V output but then flattens. If a wider output-voltage range is necessary, you could use Analog Devices’ AD7541A, which uses a 15V power supply, in place of the AD5415. This substitution extends the usable output-signal range to approximately 7V.


CMOS DACs act as digitally controlled voltage dividers的更多相关文章
- Fixed DC-DC Regulator Output Uses A Digitally Controlled Potentiometer
http://electronicdesign.com/print/passives/fixed-dc-dc-regulator-output-uses-digitally-controlled-po ...
- Digital variable resistor compensates voltage regulator
A variable resistor that integrates a programmable, temperature-indexed look-up table can compensate ...
- CMOS和TTL的區別
TTL電路是晶體管-晶體管邏輯電路的英文縮寫(Transister-Transister-Logic ),是數字集成電路的一大門類.它采用雙極型工藝制造,具有高速度低功耗和品種多等特點. CMOS是: ...
- OpAmp Voltage Follower/Regulator
LDO Regulator High accuracy voltage regulator Vout = 2.5V * (1 + ( 5.6 / 6.8 ) ) = 4.55V Recently th ...
- TTL和CMOS电平
参考: 1.https://baike.baidu.com/item/TTL%E7%94%B5%E5%B9%B3/5904345 2.https://baike.baidu.com/item/CMOS ...
- DAC Essentials
http://e2e.ti.com/blogs_/b/analogwire/archive/tags/DAC%2bEssentials DAC Essentials: A new blog serie ...
- Adding Digital control to Dual tracking LM317 / LM337 Bench supply
Adding Digital control to Dual tracking LM317 / LM337 Bench supply I've been working on my own idea ...
- 采用TL026等构成的宽带ALC放大器电路图
Building a Differential Amplifier An op-amp with no feedback is already a differential amplifier, am ...
- Make a DAC with a microcontroller's PWM timer
http://www.edn.com/design/analog/4337128/Make-a-DAC-with-a-microcontroller-s-PWM-timer Many embedded ...
随机推荐
- 011 CountDownLatch,CyclicBarrier和Semaphore
CountDownLatch(闭锁,有译倒计数,锁寄存): public class CountDownLatchTest { /*** 比如有一个任务A,它要等待其他4个任务执行完毕之后才能执行,此 ...
- [转载]ACE的陷阱
转自: http://blog.csdn.net/fullsail/article/details/2915685 坦白说,使用这个标题无非是希望能够吸引你的眼球,这篇文章的目的仅仅是为了揭示一些AC ...
- Python模块之pxssh
pxssh模块用于在python中ssh远程连接,执行命令,返回结果,但注意不支持Windows系统 #!/usr/bin/env python #-*- coding:utf-8 -*- from ...
- C#子线程中更新主线程UI-----注意项
using System;using System.Collections.Generic;using System.ComponentModel;using System.Data;using Sy ...
- sshd_config OpenSSH SSH 进程配置文件配置说明
名称 sshd_config – OpenSSH SSH 服务器守护进程配置文件 大纲 /etc/ssh/sshd_config 描述sshd 默认从 /etc/ssh/sshd_config 文件( ...
- HDU 4370 0 or 1(spfa+思维建图+计算最小环)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4370 题目大意:有一个n*n的矩阵Cij(1<=i,j<=n),要找到矩阵Xij(i< ...
- covariance matrix 和数据分布情况估计
how to get data covariance matrix: http://stattrek.com/matrix-algebra/covariance-matrix.aspx meaning ...
- Web开发入门知识小总结
原来是写给 http://www.zhihu.com/question/22689579 的答案,也算是学了一学期web课程后的一点小总结,搬运到博客里存一下吧~ ================== ...
- opencv3.10加入OPENCV_contrib模块
在VS2015+opencv3.1进行算法研究时,遇到了一些模块在官网下载的里面是没有的,需要自己进行编译,参考以下链接 http://blog.csdn.net/liu798675179/artic ...
- 转:perl源码审计
转:http://www.cgisecurity.com/lib/sips.html Security Issues in Perl Scripts By Jordan Dimov (jdimov@c ...