最大半联通子图对应缩点后的$DAG$上的最长链

复杂度$O(n + m)$

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std; extern inline char gc() {
static char RR[], *S = RR + , *T = RR + ;
if(S == T) fread(RR, , , stdin), S = RR;
return *S ++;
}
inline int read() {
int p = , w = ; char c = gc();
while(c > '' || c < '') { if(c == '-') w = -; c = gc(); }
while(c >= '' && c <= '') p = p * + c - '', c = gc();
return p * w;
} #define ri register int
#define sid 1005000 int n, m, id, nid, cnp, mod, top;
int pre[sid], nxt[sid], node[sid], cap[sid], vis[sid];
int low[sid], dfn[sid], st[sid], ins[sid], cnt[sid], b[sid], deg[sid], q[sid]; inline void addedge(int u, int v) {
nxt[++ cnp] = cap[u]; cap[u] = cnp;
pre[cnp] = u; node[cnp] = v; deg[v] ++;
} void tarjan(int o, int fa) {
low[o] = dfn[o] = ++ id; st[++ top] = o; ins[o] = ;
#define cur node[i]
for(int i = cap[o]; i; i = nxt[i]) {
if(!dfn[cur]) tarjan(cur, o), low[o] = min(low[o], low[cur]);
else if(ins[cur]) low[o] = min(low[o], dfn[cur]);
}
if(dfn[o] == low[o]) {
int p; ++ nid;
do{ p = st[top --]; b[p] = nid;
ins[p] = ; cnt[nid] ++;
} while(p != o);
}
} inline void inc(int &a, int b)
{ a += b; if(a >= mod) a -= mod; } struct dp {
int sz, num;
friend void cmax(dp &a, dp b) {
if(b.sz > a.sz) a = b;
else if(b.sz == a.sz) inc(a.num, b.num);
}
} f[sid]; void top_dp() {
int fr = , to = ;
for(ri i = ; i <= nid; i ++) {
if(!deg[i]) q[++ to] = i;
f[i] = { cnt[i], };
}
#define cur node[i]
while(fr <= to) {
int o = q[fr ++];
for(ri i = cap[o]; i; i = nxt[i]) {
deg[cur] --; if(!deg[cur]) q[++ to] = cur;
if(vis[cur] == o) continue;
cmax(f[cur], (dp){ f[o].sz + cnt[cur], f[o].num } );
vis[cur] = o;
}
}
dp ans = { , };
for(ri i = ; i <= nid; i ++) cmax(ans, f[i]);
printf("%d\n%d\n", ans.sz, ans.num);
} int main() {
n = read(); m = read(); mod = read();
for(ri i = ; i <= m; i ++) {
int u = read(), v = read();
addedge(u, v);
}
for(ri i = ; i <= n; i ++)
if(!dfn[i]) tarjan(i, );
memset(cap, , (n + ) << );
memset(deg, , (n + ) << );
int cno = cnp; cnp = ;
for(ri i = ; i <= cno; i ++)
if(b[pre[i]] != b[node[i]]) addedge(b[pre[i]], b[node[i]]);
top_dp();
return ;
}

bzoj1093 [ZJOI2007]最大半联通子图 缩点 + 拓扑序的更多相关文章

  1. bzoj1093[ZJOI2007]最大半连通子图(tarjan+拓扑排序+dp)

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...

  2. bzoj 1093 [ZJOI2007]最大半连通子图——缩点+拓扑

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1093 缩点+拓扑,更新长度的时候维护方案数. 结果没想到处理缩点后的重边,这样的话方案数会算 ...

  3. 【BZOJ】1093: [ZJOI2007]最大半连通子图(tarjan+拓扑序)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1093 两个条件综合起来加上求最大的节点数,那么很明显如果是环一定要缩点. 然后再仔细思考下就是求da ...

  4. 【BZOJ1093】[ZJOI2007]最大半联通子图(Tarjan,动态规划)

    [BZOJ1093][ZJOI2007]最大半联通子图(Tarjan,动态规划) 题面 BZOJ 洛谷 洛谷的讨论里面有一个好看得多的题面 题解 显然强连通分量对于题目是没有任何影响的,直接缩点就好了 ...

  5. [bzoj 1093][ZJOI2007]最大半联通子图(强联通缩点+DP)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1093 分析: 首先肯定是先把强联通全部缩成一个点,然后成了一个DAG 下面要知道一点: ...

  6. BZOJ1093 [ZJOI2007]最大半连通子图 【tarjan缩点 + DAG最长路计数】

    题目 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G ...

  7. bzoj1093: [ZJOI2007]最大半连通子图 scc缩点+dag上dp

    一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...

  8. BZOJ1093 [ZJOI2007]最大半连通子图

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...

  9. BZOJ1093: [ZJOI2007]最大半连通子图(tarjan dp)

    题意 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G' ...

随机推荐

  1. c++ poco 使用mysql中文乱码问题

    poco 是c++ 一个比较好的库,现在正在学习使用它,碰到一些问题记录在此. poco版本:poco-1.46-all ,带有数据库的支持模块 操作系统:ubuntu 1.使用poco的MySQL模 ...

  2. Java 9 中的 9 个新特性

    Java 8 发布三年多之后,java9已经发布了 . 你可能已经听说过 Java 9 的模块系统,但是这个新版本还有许多其它的更新. 这里有九个令人兴奋的新功能将与 Java 9 一起发布.   1 ...

  3. /i,/m,/s,/x,/A,/s,/U,/x,/j,/u 等正则修饰符用法~

    i (PCRE_CASELESS) 如果设置了这个修饰符,模式中的字母会进行大小写不敏感匹配. m (PCRE_MULTILINE) 默认情况下,PCRE 认为目标字符串是由单行字符组成的(然而实际上 ...

  4. 24、CSS定位

    CSS定位方法 driver.find_element_by_css_selector() 1.CSS定位常用策略(方式) 1.id选择器 说明:根据元素id属性来选择 格式:#id 如:#userA ...

  5. 大聊Python----迭代器

    迭代器 我们已经知道,可以直接作用于for循环的数据类型有以下几种: 一类是集合数据类型,如list.tuple.dict.set.str等: 一类是generator,包括生成器和带yield的ge ...

  6. php的发展历史

    php最初就是为了快速构建一个web页面而迅速被大家广为接受的.它的好处是在代码中能内嵌html的代码,从而让程序员能再一个页面中同时写html代码和php代码就能生成一个web页面. 这篇文章用时间 ...

  7. Linux 脚本内容指定用户执行

    #!/bin/bash set -x ## 因为这些变量在下面要用,所以要写在最上面, ## 如果直接写在下面,则变量获取不到,并且下面的 $ 标识的都要用 引号引起来,否则这些参数接收不到 tarf ...

  8. Coursera在线学习---第二节.Octave学习

    1)两个矩阵相乘 A*B 2)两个矩阵元素位相乘(A.B矩阵中对应位置的元素相乘) A.*B 3)矩阵A的元素进行平方 A.^2 4)向量或矩阵中的元素求倒数 1./V    或   1./A 5) ...

  9. 用CRF做命名实体识别(一)

    用CRF做命名实体识别(二) 用CRF做命名实体识别(三) 用BILSTM-CRF做命名实体识别 博客园的markdown格式可能不太方便看,也欢迎大家去我的简书里看 摘要 本文主要讲述了关于人民日报 ...

  10. 9 - Python函数定义-位置参数-返回值

    目录 1 函数介绍 1.1 为什么要使用函数 1.2 Python中的函数 2 函数的基本使用 3 函数的参数 3.1 参数的默认值 3.2 可变参数 3.2.1 可变位置传参 3.2.2 可变关键字 ...