【1】

【2】

Answer: B。 即 x1=3这条垂直线。

【3】

Answer: B

因为要尽可能小。对B,右侧红叉,有1/2 * 2  = 1 ≥ 1,左侧圆圈,有1/2 * -2  = -1 ≤ -1。

A太小不满足不等式

【4】

参考课件:


 测验

Answer:B。

Answer: B

Answer:CD

Answer: ABG

欠拟合。

A 正确。增加feature、增加多项式feature

B 正确。神经网络增加hidden units

C 错误。逻辑回归成本函数是凸的,因此梯度下降总是会找到全局最小值。

D 错误。

E 错误。

F 错误。已经欠拟合了,应该减小

G 正确。

Answer: ADE

A 正确。使用高斯核做相似性度量,要求数据处于大致相同的范围内。

B 错误。线性可分的数据集通常可以由许多不同的线分隔。 改变参数C将导致SVM的决策边界在这些可能性之间变化。 例如,对于非常大的C值,它可以学习更大的θ值以增加某些示例的余量。

C 错误。K个分类器

D 正确。范围为0-1,参考课件

E 正确

F 错误

【原】Coursera—Andrew Ng机器学习—Week 7 习题—支持向量机SVM的更多相关文章

  1. 【原】Coursera—Andrew Ng机器学习—Week 11 习题—Photo OCR

    [1]机器学习管道 [2]滑动窗口 Answer:C ((200-20)/4)2 = 2025 [3]人工数据 [4]标记数据 Answer:B (10000-1000)*10 /(8*60*60) ...

  2. 【原】Coursera—Andrew Ng机器学习—Week 5 习题—Neural Networks learning

    课上习题 [1]代价函数 [2]代价函数计算 [3] [4]矩阵的向量化 [5]梯度校验 Answer:(1.013 -0.993) / 0.02 = 3.001 [6]梯度校验 Answer:学习的 ...

  3. 【原】Coursera—Andrew Ng机器学习—Week 3 习题—Logistic Regression 逻辑回归

    课上习题 [1]线性回归 Answer: D A 特征缩放不起作用,B for all 不对,C zero error不对 [2]概率 Answer:A [3]预测图形 Answer:A 5 - x1 ...

  4. 【原】Coursera—Andrew Ng机器学习—Week 10 习题—大规模机器学习

    [1]大规模数据 [2]随机梯度下降 [3]小批量梯度下降 [4]随机梯度下降的收敛 Answer:BD A 错误.学习率太小,算法容易很慢 B 正确.学习率小,效果更好 C 错误.应该是确定阈值吧 ...

  5. 【原】Coursera—Andrew Ng机器学习—Week 9 习题—异常检测

    [1]异常检测 [2]高斯分布 [3]高斯分布 [4] 异常检测 [5]特征选择 [6] [7]多变量高斯分布 Answer: ACD B 错误.需要矩阵Σ可逆,则要求m>n  测验1 Answ ...

  6. 【原】Coursera—Andrew Ng机器学习—Week 8 习题—聚类 和 降维

    [1]无监督算法 [2]聚类 [3]代价函数 [4] [5]K的选择 [6]降维 Answer:本来是 n 维,降维之后变成 k 维(k ≤ n) [7] [8] Answer: 斜率-1 [9] A ...

  7. 【原】Coursera—Andrew Ng机器学习—Week 6 习题—Advice for applying machine learning

    [1] 诊断的作用 [2]过拟合 [3] [4] 高偏差bias,欠拟合underfitting 高方差variance,过拟合overfitting [5]参数λ Answer:  λ太大,则参数都 ...

  8. 【原】Coursera—Andrew Ng机器学习—Week 1 习题—Linear Regression with One Variable 单变量线性回归

    Question 1 Consider the problem of predicting how well a student does in her second year of college/ ...

  9. 【原】Coursera—Andrew Ng机器学习—Week 2 习题—Linear Regression with Multiple Variables 多变量线性回归

    Gradient Descent for Multiple Variables [1]多变量线性模型  代价函数 Answer:AB [2]Feature Scaling 特征缩放 Answer:D ...

随机推荐

  1. PHP 5.5.38 + mysql 5.0.11 + zabbix3.0 + nginx 安装

    PHP 5.5.38 + mysql 5.0.11 + zabbix3.0 + nginx 1.首先在安装好环境下安装 zabbix3.0情况下 2. yum install mysql-devel ...

  2. css 2D动画

    2D动画: 通过 CSS3  transform转换,我们能够对元素进行移动.缩放.转动.拉长或拉伸. 2D移动:translate().使用translate()函数,你可以把元素从原来的位置移动. ...

  3. BW数据加载

    BW数据加载的优先级   1.主数据属性的加载 步骤图  从下到上 1)运行InfoPackage加载到PSA 找到主数据属性的InfoPackage,双击  点击Start按钮  点击监视器,查看运 ...

  4. 【转】VC中MessageBox与AfxMessageBox用法与区别

    原文网址:http://blog.csdn.net/holybin/article/details/28403109 一.MessageBox()用法 1.函数原型 Messagebox函数在Win3 ...

  5. ubuntu下eclipse安装maven插件

    ubuntu科输入如下指令安装eclipse:sudo apt-get install eclipse ubuntu下安装maven插件打开Eclipse点击Help -> Install Ne ...

  6. 在Mac和win7上分别安装了docker后,发现原来的vagrant都启动不了了

    在Mac和win7上分别安装了docker后,发现原来的vagrant都启动不了了 liugx@liugx vagrant$ vagrant up /opt/vagrant/embedded/gems ...

  7. HDOJ5875(线段树)

    Function Time Limit: 7000/3500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  8. java封装后引用的例子

    封装好的文件: 另外一个文件引用封装文件的方法: 来源: https://www.runoob.com/java/java-encapsulation.html

  9. postman参数化的方法

    1.准备csv格式的文件(注意第一行是是引用参数的名称) 2.编写请求,应用变量参数,并且设置断言 引用变量参数 3.把这个请求的文件夹runner一下批量执行 4.把第一步变量的csv文件在runn ...

  10. java里面的public static void main(String[] args)

    package com.java_1; public class Hello { public static void main(String[] args){ System.out.println( ...