1016: [JSOI2008]最小生成树计数

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 5292  Solved: 2163
[Submit][Status][Discuss]

Description

  现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的
最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生
成树可能很多,所以你只需要输出方案数对31011的模就可以了。

Input

  第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整
数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,0
00。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。

Output

  输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。

Sample Input

4 6
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1

Sample Output

8

HINT

 
思路:
首先我不会Matrix-Tree定理额,先说一下朴素的写法。不过在说写法之前,一定得知道这个性质:最小生成树如果存在多棵,那么这些生成树的所有的权值(乃至该权值所对应的边的数目)都是相同的
做法:
首先找到一棵最小生成树,然后我们就知道这个生成树中每个权值所需要的边的数目。然后我们从最小的边开始,每次对权值相同的边进行dfs,统计出有多少种覆盖类型cnt1,然后再从次小的边进行dfs,统计出cnt2,然后最后的ans=cnt1*cnt2*...%mod。之所以可以这样做是因为,所有权值小的边所构成的集合一定是固定的集合(谈心的思想)。
然后我理解了。。。就没有敲代码了,具体想看的话就看这个人的代码吧:戳这里
 
 
然后晚上补 Matrix-Tree
 
 
 
 
 

最小生成树的边的概念问题!!! 最小生成树的计数 bzoj 1016的更多相关文章

  1. 最小生成树计数 bzoj 1016

    最小生成树计数 (1s 128M) award [问题描述] 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一 ...

  2. BZOJ 1016 【JSOI2008】 最小生成树计数

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  3. 1016: [JSOI2008]最小生成树计数 - BZOJ

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  4. [BZOJ 1016] [JSOI2008] 最小生成树计数 【DFS】

    题目链接:BZOJ - 1016 题目分析 最小生成树的两个性质: 同一个图的最小生成树,满足: 1)同一种权值的边的个数相等 2)用Kruscal按照从小到大,处理完某一种权值的所有边后,图的连通性 ...

  5. BZOJ 1016 最小生成树计数

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  6. BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )

    不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...

  7. 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)

    1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...

  8. 【BZOJ 1016】【JSOI 2008】最小生成树计数

    http://www.lydsy.com/JudgeOnline/problem.php?id=1016 统计每一个边权在最小生成树中使用的次数,这个次数在任何一个最小生成树中都是固定的(归纳证明). ...

  9. [BZOJ]1016 JSOI2008 最小生成树计数

    最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...

随机推荐

  1. 《C》数组

    数组 数组方法: var arr = [1, 2, 3]; arr.push(4)://arr='[1, 2, 3, 4]' 向末尾添加一个或者多个元素 arr.pop()://删除末位元素 var ...

  2. UVALive - 6916 Punching Robot Lucas+dp

    题目链接: http://acm.hust.edu.cn/vjudge/problem/96344 Punching Robot Time Limit: 1000MS64bit IO Format: ...

  3. C语言的问卷调查

    1.你对自己的未来有什么规划?做了哪些准备? 未来想当一个网络工程师,为了这个目标我正在努力学习网络.网页及相关的知识. 2.你认为什么是学习?学习有什么用?现在学习动力如何?为什么? 学习就是不断尝 ...

  4. alpha6/10

    队名:Boy Next Door 燃尽图 晗(组长) 今日完成 学习了css的一些基本操作. 明日工作 抽空把javascript的基本操作学习一下 还剩下哪些任务 微信API还有京东钱包的API. ...

  5. mnist测试

    第一步:进入caffe目录 第二步:获取mnist数据集 ./data/mnist/get_mnist.sh 第三步:创建lmdb ./examples/mnist/create_mnist.sh 第 ...

  6. 第94天:CSS3 盒模型详解

    CSS3盒模型详解 盒模型设定为border-box时 width = border + padding + content 盒模型设定为content-box时 width = content所谓定 ...

  7. 第91天:CSS3 属性选择器、伪类选择器和伪元素选择器

    一.属性选择器 其特点是通过属性来选择元素,具体有以下5种形式: 1.E[attr] 表示存在attr属性即可:    div[class] 2.E[attr=val] 表示属性值完全等于val:   ...

  8. QoS专题-第4期-QoS实现之限速

    QoS实现之限速 通过前面几篇介绍,大家都知道了MQC是实现QoS的技术,优先级映射是实现QoS的前提条件.读完之后也许无法直观感觉到QoS是如何提升网络服务质量.今天小编给大家介绍限速,通过实验,可 ...

  9. Ants UVA - 1411(km板题竟然让我换了个板子)

    题意: 给出n个白点和n个黑点的坐标,要求用n条不相交的线段把它们连接起来,其中每条线段恰好连接一个白点和一个黑点,每个点恰好连接到一条线段 解析: 带入负的欧几里得距离求就好了 假设a1-b1 与 ...

  10. [AT2364] [agc012_d] Colorful Balls

    题目链接 AtCoder:https://agc012.contest.atcoder.jp/tasks/agc012_d 洛谷:https://www.luogu.org/problemnew/sh ...