【刷题记录】 && 【算法杂谈】折半枚举与upper_bound 和 lower_bound
【什么是upper_bound 和 lower_bound】
简单来说lower_bound就是你给他一个非递减数列[first,last)和x,它给你返回非递减序列[first, last)中的第一个大于等于值x的位置。
而upper_bound就是你给他一个非递减数列[first,last)和x,它给你返回非递减序列[first, last)中的第一个大于值x的位置。
STL中实现这两种函数的算法就是二分。。。。。。
【upper_bound 和 lower_bound代码】
//STl中的lower_bound源代码
//这个算法中,first是最终要返回的位置
int lower_bound(int *array, int size, int key)
{
int first = 0, middle;
int half, len;
len = size; while(len > 0)
{
half = len >> 1;
middle = first + half;
if(array[middle] < key)
{
first = middle + 1;
len = len-half-1; //在右边子序列中查找
}
else
len = half; //在左边子序列(包含middle)中查找
}
return first;
}
//——————————upper_bound——————————————————
int upper_bound(int *array, int size, int key)
{
int first = 0, len = size-1;
int half, middle; while(len > 0){
half = len >> 1;
middle = first + half;
if(array[middle] > key) //中位数大于key,在包含last的左半边序列中查找。
len = half;
else{
first = middle + 1; //中位数小于等于key,在右半边序列中查找。
len = len - half - 1;
}
}
return first;
}
//______________End___________________________________________________________
【POJ 2785】
【题目原文】
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
【题目大意】
给定各有n个整数的4个数列A,B,C,D。要从每一个数列中各去出一个数,使四个数的和为0.求出这样组合的个数。(当同一数列中有相同数字时按不同数字看待——博主注)
【输入描述】
有n行,一行4个数,分别是A[i],B[i],C[i],D[i]
【输入样例】
6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45
【输出描述】
一个数
【输出样例】
5
【博主注释】
有5种情况,分别是-45-27+42+30 26+30-10-46 -32+22+56-46 -32+30-75+77 -32-54+56+36
【题目分析】
我们把这些数对半分成AB与CD考虑。先从AB中取出a[i],b[i]后,为了使总和为0则需要从CD中取出c[i]+d[i]=a[i]-d[i]。因此将这些情况枚举出来,再用upper_bound和lower_bound进行二分即可。时间复杂度为O(n^2 logn)
【代码】
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=4001;
int n;
int a[maxn],b[maxn],c[maxn],d[maxn];
int cd[16000001];
int lower_bound(int *array, int size, int key)
{
int first = 0, middle;
int half, len;
len = size;
while(len > 0)
{
half = len >> 1;
middle = first + half;
if(array[middle] < key)
{
first = middle + 1;
len = len-half-1; //在右边子序列中查 找
}
else
len = half; //在左边子序列(包含middle)中查找
}
return first;
}
int upper_bound(int *array, int size, int key)
{
int first = 0, len = size-1;
int half, middle;
while(len > 0)
{
half = len >> 1;
middle = first + half;
if(array[middle] > key) len = half; //中位数大于key,在包含last的左半边序列中查找.
else
{
first = middle + 1; //中位数小于等于key,在右半边序列中查找。
len = len - half - 1;
}
}
return first;
}
int main()
{
cin>>n;
for(int i=0;i<n;i++) cin>>a[i]>>b[i]>>c[i]>>d[i];
//for(int i=0;i<n;i++) cin>>b[i];
//for(int i=0;i<n;i++) cin>>c[i];
//for(int i=0;i<n;i++) cin>>d[i];
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++) cd[i*n+j]=c[i]+d[j];
}
sort(cd,cd+n*n);
long long res=0;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
int CD=-(a[i]+b[j]);
res+=upper_bound(cd,cd+n*n,CD)-lower_bound(cd,cd+n*n,CD);
}
}
cout<<res;
return 0;
}
【刷题记录】 && 【算法杂谈】折半枚举与upper_bound 和 lower_bound的更多相关文章
- $2019$ 暑期刷题记录1:(算法竞赛DP练习)
$ 2019 $ 暑期刷题记录: $ POJ~1952~~BUY~LOW, BUY~LOWER: $ (复杂度优化) 题目大意:统计可重序列中最长上升子序列的方案数. 题目很直接的说明了所求为 $ L ...
- PKUWC&SC 2018 刷题记录
PKUWC&SC 2018 刷题记录 minimax 线段树合并的题,似乎并不依赖于二叉树. 之前写的草率的题解在这里:PKUWC2018 minimax Slay the Spire 注意到 ...
- DP刷题记录(持续更新)
DP刷题记录 (本文例题目前大多数都选自算法竞赛进阶指南) TYVJ1071 求两个序列的最长公共上升子序列 设\(f_{i,j}\)表示a中的\(1-i\)与b中色\(1-j\)匹配时所能构成的以\ ...
- 刷题记录:[De1CTF 2019]Giftbox && Comment
目录 刷题记录:[De1CTF 2019]Giftbox && Comment 一.知识点 1.sql注入 && totp 2.RCE 3.源码泄露 4.敏感文件读取 ...
- DP刷题记录
目录 dp刷题记录 codeforces 706C codeforces 940E BZOJ3997 POJ2279 GYM102082B GYM102082D codeforces132C L3-0 ...
- 刷题记录:[GWCTF 2019]枯燥的抽奖
目录 刷题记录:[GWCTF 2019]枯燥的抽奖 知识点 php伪随机性 刷题记录:[GWCTF 2019]枯燥的抽奖 题目复现链接:https://buuoj.cn/challenges 参考链接 ...
- 2021.12.19 eleveni的刷题记录
2021.12.19 eleveni的刷题记录 0. 本次记录有意思的题 0.1 每个点恰好经过一次并且求最小时间 P2469 [SDOI2010]星际竞速 https://www.luogu.com ...
- 2021.12.16 eleveni的刷题记录
2021.12.16 eleveni的刷题记录 1. 数论 https://www.luogu.com.cn/problem/P2532 1.1卡特兰数 https://www.luogu.com.c ...
- PE刷题记录
PE刷题记录 PE60 / 20%dif 这道题比较坑爹. 所有可以相连的素数可以构成一张图,建出这张图,在其中找它的大小为5的团.注意上界的估算,大概在1W以内.1W内有1229个素数,处理出这些素 ...
随机推荐
- linux 下串口独占方式打开
参考文章: http://blog.csdn.net/rl529014/article/details/51336161 http://blog.csdn.net/lin_fs/article/de ...
- CentOS光盘挂载命令以及安装软件
最近又学习了一个命令:mount 挂载命令,我们在安装软件的时候,直接敲命令install 包名,但是这里其实是联网安装的, 如果使用光盘,从本地安装就要使用mount命令. 1.我的linux系统是 ...
- 第二篇 基于.net搭建热插拔式web框架(沙箱的构建)
上周五写了一个实现原理篇,在评论中看到有朋友也遇到了我的问题,真的是有种他乡遇知己的感觉,整个系列我一定会坚持写完,并在最后把代码开源到git中.上一篇文章很多人看了以后,都表示不解,觉得不知道我到底 ...
- 在Parallel中使用DbSet.Add()发现的一系列多线程问题和解决过程
发现问题 需求很简单,大致就是要批量往数据库写数据,于是打算用Parallel并行的方式写入,希望能利用计算机多核特性加快程序执行速度.想的很美好,于是快速撸了类似下面的一串代码: using (va ...
- POJ 2226二分图最大匹配
匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名.匈牙利算法是基于Hall定理中充分性证明的思想,它是二部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图 ...
- kvm虚拟机静态和动态迁移
一.kvm虚拟机静态迁移 1.静态迁移就是虚拟机在关机状态下,拷贝虚拟机虚拟磁盘文件与配置文件到目标虚拟主机中,实现的迁移. (1)虚拟主机各自使用本地存储存放虚拟机磁盘文件 本文实现基于本地磁盘存储 ...
- Servlet引擎Jetty之入门1
Jetty与tomcat一样,HttpWeb容器,支持实现Servlet规范. 详细介绍参考:https://www.ibm.com/developerworks/cn/java/j-lo-jetty ...
- 一个特殊情形的Mittag-Leffler分解
Mittag-Leffler分解定理的证明有多种,比如可以利用一维$\overline{\partial}$的解来构造相应的函数,还可以利用极点主部的Taylor多项式来进行修正使得$\sum(g_{ ...
- 只有IE64位能上网。
- Laravel中的日志与上传
PHP中的框架众多,我自己就接触了好几个.大学那会啥也不懂啥也不会,拿了一个ThinkPHP学了.也许有好多人吐槽TP,但是个人感觉不能说哪个框架好,哪个框架不好,再不好的框架你能把源码读上一遍,框架 ...