这里有一篇摘自MSDN的文章。介绍了YUV视频数据格式。

About YUV Video

Digital video is often encoded in a YUV format. This article explains the general concepts of YUV video, along with some terminology, without going deeply into the mathematics of YUV video processing.

If you have worked with computer graphics, you are probably familiar with RGB color. An RGB color is encoded using three values: red, green, and blue. These values correspond directly to portions of the visible spectrum. The three RGB values form a mathematical
coordinate system, called a color space. The red component defines one axis of this coordinate system, blue defines the second, and green defines the third, as shown in the following illustration. Any valid RGB color falls somewhere within this color
space. For example, pure magenta is 100% blue, 100% red, and 0% green.

Although RGB is a common way to represent colors, other coordinate systems are possible. The term YUV refers to a family of color spaces, all of which encode brightness information separately from color information. Like RGB, YUV uses three values
to represent any color. These values are termed Y', U, and V. (In fact, this use of the term "YUV" is technically inaccurate. In computer video, the term YUV almost always refers to one particular color space named Y'CbCr, discussed later. However, YUV is
often used as a general term for any color space that works along the same principles as Y'CbCr.)

The Y' component, also called luma, represents the brightness value of the color. The prime symbol (') is used to differentiate luma from a closely related value, luminance, which is designated Y. Luminance is derived from linear RGB
values, whereas luma is derived from non-linear (gamma-corrected) RGB values. Luminance is a closer measure of true brightness but luma is more practical to use for technical reasons. The prime symbol is frequently omitted, but YUV color spaces always
use luma, not luminance.

Luma is derived from an RGB color by taking a weighted average of the red, green, and blue components. For standard-definition television, the following formula is used:

Y' = 0.299R + 0.587G + 0.114B

This formula reflects the fact that the human eye is more sensitive to certain wavelengths of light than others, which affects the perceived brightness of a color. Blue light appears dimmest, green appears brightest, and red is somewhere in between. This formula
also reflects the physical characteristics of the phosphors used in early televisions. A newer formula, taking into account modern television technology, is used for high-definition television:

Y' = 0.2125R + 0.7154G + 0.0721B

The luma equation for standard-definition television is defined in a specification named ITU-R BT.601. For high-definition television, the relevant specification is ITU-R BT.709.

The U and V components, also called chroma values or color difference values, are derived by subtracting the Y value from the red and blue components of the original RGB color:

U = B - Y'

V = R - Y'

Together, these values contain enough information to recover the original RGB value.

Benefits
of YUV

Analog television uses YUV partly for historical reasons. Analog color television signals were designed to be backward compatible with black-and-white televisions. The color television signal carries the chroma information (U and V) superimposed onto the luma
signal. Black-and-white televisions ignore the chroma and display the combined signal as a grayscale image. (The signal is designed so that the chroma does not significantly interfere with the luma signal.) Color televisions can extract the chroma and convert
the signal back to RGB.

YUV has another advantage that is more relevant today. The human eye is less sensitive to changes in hue than changes in brightness. As a result, an image can have less chroma information than luma information without sacrificing the perceived quality of the
image. For example, it is common to sample the chroma values at half the horizontal resolution of the luma samples. In other words, for every two luma samples in a row of pixels, there is one U sample and one V sample. Assuming that 8 bits are used to encode
each value, a total of 4 bytes are needed for every two pixels (two Y', one U, and one V), for an average of 16 bits per pixel, or 30% less than the equivalent 24-bit RGB encoding.

YUV is not inherently any more compact than RGB. Unless the chroma is downsampled, a YUV pixel is the same size as an RGB pixel. Also, the conversion from RGB to YUV is not lossy. If there is no downsampling, a YUV pixel can be converted back to RGB with no
loss of information. Downsampling makes a YUV image smaller and also loses some of the color information. If performed correctly, however, the loss is not perceptually significant.

YUV
in Computer Video

The formulas listed previously for YUV are not the exact conversions used in digital video. Digital video generally uses a form of YUV called Y'CbCr. Essentially, Y'CbCr works by scaling the YUV components to the following ranges:

Component Range
Y' 16–235
Cb/Cr 16–240, with 128 representing zero

These ranges assume 8 bits of precision for the Y'CbCr components. Here is the exact derivation of Y'CbCr, using the BT.601 definition of luma:

  1. Start with RGB values in the range [0...1]. In other words, pure black is 0 and pure white is 1. Importantly, these are non-linear (gamma corrected) RGB values.
  2. Calculate the luma. For BT.601, Y' = 0.299R + 0.587G + 0.114B, as described earlier.
  3. Calculate the intermediate chroma difference values (B - Y') and (R - Y'). These values have a range of +/- 0.886 for (B - Y'), and +/- 0.701 for (R - Y').
  4. Scale the chroma difference values as follows:

    Pb = (0.5 / (1 - 0.114)) × (B - Y')

    Pr = (0.5 / (1 - 0.299)) × (R - Y')

    These scaling factors are designed to give both values the same numerical range, +/- 0.5. Together, they define a YUV color space named Y'PbPr. This color space is used in analog component video.

  5. Scale the Y'PbPr values to get the final Y'CbCr values:

    Y' = 16 + 219 × Y'

    Cb = 128 + 224 × Pb

    Cr = 128 + 224 × Pr

These last scaling factors produce the range of values listed in the previous table. Of course, you can convert RGB directly to Y'CbCr without storing the intermediate results. The steps are listed separately here to show how Y'CbCr derives from the original
YUV equations given at the beginning of this article.

The following table shows RGB and YCbCr values for various colors, again using the BT.601 definition of luma.

Color R G B Y' Cb Cr
Black 0 0 0 16 128 128
Red 255 0 0 81 90 240
Green 0 255 0 145 54 34
Blue 0 0 255 41 240 110
Cyan 0 255 255 170 166 16
Magenta 255 0 255 106 202 222
Yellow 255 255 0 210 16 146
White 255 255 255 235 128 128

As this table shows, Cb and Cr do not correspond to intuitive ideas about color. For example, pure white and pure black both contain neutral levels of Cb and Cr (128). The highest and lowest values for Cb are blue and yellow, respectively. For Cr, the highest
and lowest values are red and cyan.

For
More Information

Related topics

Video
Media Types
Media
Types

http://msdn.microsoft.com/en-us/library/windows/desktop/bb530104(v=vs.85).aspx

关于视频YUV的更多相关文章

  1. 音视频处理基础知识扫盲:数字视频YUV像素表示法以及视频帧和编解码概念介绍

    专栏:Python基础教程目录 专栏:使用PyQt开发图形界面Python应用 专栏:PyQt+moviepy音视频剪辑实战 专栏:PyQt入门学习 老猿Python博文目录 老猿学5G博文目录 一. ...

  2. 使用ffmpeg将BMP图片编码为x264视频文件,将H264视频保存为BMP图片,yuv视频文件保存为图片的代码

    ffmpeg开源库,实现将bmp格式的图片编码成x264文件,并将编码好的H264文件解码保存为BMP文件. 实现将视频文件yuv格式保存的图片格式的測试,图像格式png,jpg, gif等等測试均O ...

  3. 最简单的基于FFMPEG的视频编码器(YUV编码为H.264)

    本文介绍一个最简单的基于FFMPEG的视频编码器.该编码器实现了YUV420P的像素数据编码为H.264的压缩编码数据.编码器代码十分简单,可是每一行代码都非常重要,适合好好研究一下.弄清楚了本代码也 ...

  4. 最简单的基于FFmpeg的视频编码器-更新版(YUV编码为HEVC(H.265))

    ===================================================== 最简单的基于FFmpeg的视频编码器文章列表: 最简单的基于FFMPEG的视频编码器(YUV ...

  5. 利用FFmpeg玩转Android视频录制与压缩(二)<转>

    转载出处:http://blog.csdn.net/mabeijianxi/article/details/72983362 预热 时光荏苒,光阴如梭,离上一次吹牛逼已经过去了两三个月,身边很多人的女 ...

  6. 【视频开发】Nvidia硬解码总结

    Nvidia硬解码总结 1.前言 本文的主要目的是对近期进行的nvidia硬件解码工作的记录和总结.至于为什么研究nvidia硬件解码的具体内容,其实主要是为了在项目中能够利用nvidia的硬件解码和 ...

  7. moviepy音视频剪辑:颜色相关变换函数blackwhite、colorx、fadein/out、gamma_corr、invert_colors、lum_contrast、mask_color介绍

    ☞ ░ 前往老猿Python博文目录 ░ 一.引言 在<moviepy音视频剪辑:moviepy中的剪辑基类Clip详解>介绍了剪辑基类的fl.fl_time.fx方法,在<movi ...

  8. moviepy音视频剪辑:lum_contrast什么时候使用以及图像处理什么时候需要调整亮度与对比度

    ☞ ░ 前往老猿Python博文目录 ░ 一.亮度.对比度的概念 图像的亮度(luminosity )也即对明度的度量(参考<音视频处理基础知识扫盲:数字视频YUV像素表示法以及视频帧和编解码概 ...

  9. Python+moviepy音视频剪辑:视频帧数据的本质、Clip的fl方法进行变换处理的原理以及滚屏案例

    专栏:Python基础教程目录 专栏:使用PyQt开发图形界面Python应用 专栏:PyQt+moviepy音视频剪辑实战 专栏:PyQt入门学习 老猿Python博文目录 老猿学5G博文目录 一. ...

随机推荐

  1. 我是如何从一个xss到某个浏览器的远程命令执行

    0x01 前言:其实我是个小白平时就喜欢瞎搞,无意间碰到一个浏览器就想一探究竟,好了废话不多说开始!!! 0x02 可以看到我打开的新标签是怎么一个链接页面,既然是页面我是不可以XSS它呢? 于是我就 ...

  2. bzoj 3172

    收获:AC自动机定数组大小时,如果不确定,就定10^6(极限了) /************************************************************** Pro ...

  3. 69.广搜练习:  最少转弯问题(TURN)

    [问题描述] 给出一张地图,这张地图被分为n×m(n,m<=100)个方块,任何一个方块不是平地就是高山.平地可以通过,高山则不能.现在你处在地图的(x1,y1)这块平地,问:你至少需要拐几个弯 ...

  4. 在阅读sqlmap源码时学到的知识--检查运行环境

    最近在读sqlmap的源码,懵懵懂懂中页大约学到了一些知识(说给自己听的话:由此可见,所谓的能够解决所有遇到问题的python水平,只能说明你遇见的都是简单的需求....),老规矩,在这里写一下,一则 ...

  5. CentOS下KVM克隆完成后修改MAC地址/VMware复制虚拟机修改MAC地址

    克隆完成之后可能mac地址会有冲突,进入KVM删除/etc/udev/rules.d/70-persistent-net.rules中的eth0的配置,接着把eth1改成eth0,并且修改/etc/s ...

  6. ARM 调用约定 calling convention

    int bar( int a, int b, int c, int d, int e, int f, int g ) { ]; array2[ ] = a + b; array2[ ] = b + c ...

  7. mysql知识点(三)

    1.表关联是可以利用两个表的索引的,如果是用子查询,至少第二次查询是没有办法使用索引的. 2.  为了给主查询提供数据而首先执行的查询被叫做子查询 3.如果WHERE子句的查询条件里使用了函数(WHE ...

  8. 用C#调用Windows API向指定窗口发送按键消息 z

    用C#调用Windows API向指定窗口发送 一.调用Windows API. C#下调用Windows API方法如下: 1.引入命名空间:using System.Runtime.Interop ...

  9. LTE试题

    D 如果出现eNB的告警1018007“小区退服,光口不可用”,不可能是以下哪种原因造成的?(          ) 基带板上Ir接口光模块损坏 基带板上Ir接口光模块被拔出 基带板上Ir接口光模块型 ...

  10. Flink及主流流框架spark,storm比较

    干货 | Flink及主流流框架比较 IT刊 百家号17-05-2220:16 引言 随着大数据时代的来临,大数据产品层出不穷.我们最近也对一款业内非常火的大数据产品 - Apache Flink做了 ...