转:pytorch版的bilstm+crf实现sequence label
http://blog.csdn.net/appleml/article/details/78664824
在理解CRF的时候费了一些功夫,将一些难以理解的地方稍微做了下标注,隔三差五看看加强记忆, 代码是pytorch文档上的example
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.optim as optim
def to_scalar(var): #var是Variable,维度是1
# returns a python float
return var.view(-1).data.tolist()[0]
def argmax(vec):
# return the argmax as a python int
_, idx = torch.max(vec, 1)
return to_scalar(idx)
def prepare_sequence(seq, to_ix):
idxs = [to_ix[w] for w in seq]
tensor = torch.LongTensor(idxs)
return autograd.Variable(tensor)
# Compute log sum exp in a numerically stable way for the forward algorithm
def log_sum_exp(vec): #vec是1*5, type是Variable
max_score = vec[0, argmax(vec)]
#max_score维度是1, max_score.view(1,-1)维度是1*1,max_score.view(1, -1).expand(1, vec.size()[1])的维度是1*5
max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1]) # vec.size()维度是1*5
return max_score + torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))#为什么指数之后再求和,而后才log呢
class BiLSTM_CRF(nn.Module):
def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim):
super(BiLSTM_CRF, self).__init__()
self.embedding_dim = embedding_dim
self.hidden_dim = hidden_dim
self.vocab_size = vocab_size
self.tag_to_ix = tag_to_ix
self.tagset_size = len(tag_to_ix)
self.word_embeds = nn.Embedding(vocab_size, embedding_dim)
self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2, num_layers=1, bidirectional=True)
# Maps the output of the LSTM into tag space.
self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size)
# Matrix of transition parameters. Entry i,j is the score of
# transitioning *to* i *from* j.
self.transitions = nn.Parameter(torch.randn(self.tagset_size, self.tagset_size))
# These two statements enforce the constraint that we never transfer
# to the start tag and we never transfer from the stop tag
self.transitions.data[tag_to_ix[START_TAG], :] = -10000
self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000
self.hidden = self.init_hidden()
def init_hidden(self):
return (autograd.Variable(torch.randn(2, 1, self.hidden_dim // 2)),
autograd.Variable(torch.randn(2, 1, self.hidden_dim // 2)))
#预测序列的得分
def _forward_alg(self, feats):
# Do the forward algorithm to compute the partition function
init_alphas = torch.Tensor(1, self.tagset_size).fill_(-10000.)
# START_TAG has all of the score.
init_alphas[0][self.tag_to_ix[START_TAG]] = 0.
# Wrap in a variable so that we will get automatic backprop
forward_var = autograd.Variable(init_alphas) #初始状态的forward_var,随着step t变化
# Iterate through the sentence
for feat in feats: #feat的维度是5
alphas_t = [] # The forward variables at this timestep
for next_tag in range(self.tagset_size):
# broadcast the emission score: it is the same regardless of
# the previous tag
emit_score = feat[next_tag].view(1, -1).expand(1, self.tagset_size) #维度是1*5
# the ith entry of trans_score is the score of transitioning to
# next_tag from i
trans_score = self.transitions[next_tag].view(1, -1) #维度是1*5
# The ith entry of next_tag_var is the value for the
# edge (i -> next_tag) before we do log-sum-exp
#第一次迭代时理解:
# trans_score所有其他标签到B标签的概率
# 由lstm运行进入隐层再到输出层得到标签B的概率,emit_score维度是1*5,5个值是相同的
next_tag_var = forward_var + trans_score + emit_score
# The forward variable for this tag is log-sum-exp of all the
# scores.
alphas_t.append(log_sum_exp(next_tag_var))
forward_var = torch.cat(alphas_t).view(1, -1)#到第(t-1)step时5个标签的各自分数
terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
alpha = log_sum_exp(terminal_var)
return alpha
#得到feats
def _get_lstm_features(self, sentence):
self.hidden = self.init_hidden()
#embeds = self.word_embeds(sentence).view(len(sentence), 1, -1)
embeds = self.word_embeds(sentence)
embeds = embeds.unsqueeze(1)
lstm_out, self.hidden = self.lstm(embeds, self.hidden)
lstm_out = lstm_out.view(len(sentence), self.hidden_dim)
lstm_feats = self.hidden2tag(lstm_out)
return lstm_feats
#得到gold_seq tag的score
def _score_sentence(self, feats, tags):
# Gives the score of a provided tag sequence
score = autograd.Variable(torch.Tensor([0]))
tags = torch.cat([torch.LongTensor([self.tag_to_ix[START_TAG]]), tags]) #将START_TAG的标签3拼接到tag序列上
for i, feat in enumerate(feats):
#self.transitions[tags[i + 1], tags[i]] 实际得到的是从标签i到标签i+1的转移概率
#feat[tags[i+1]], feat是step i 的输出结果,有5个值,对应B, I, E, START_TAG, END_TAG, 取对应标签的值
score = score + self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]]
score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]]
return score
#解码,得到预测的序列,以及预测序列的得分
def _viterbi_decode(self, feats):
backpointers = []
# Initialize the viterbi variables in log space
init_vvars = torch.Tensor(1, self.tagset_size).fill_(-10000.)
init_vvars[0][self.tag_to_ix[START_TAG]] = 0
# forward_var at step i holds the viterbi variables for step i-1
forward_var = autograd.Variable(init_vvars)
for feat in feats:
bptrs_t = [] # holds the backpointers for this step
viterbivars_t = [] # holds the viterbi variables for this step
for next_tag in range(self.tagset_size):
# next_tag_var[i] holds the viterbi variable for tag i at the
# previous step, plus the score of transitioning
# from tag i to next_tag.
# We don't include the emission scores here because the max
# does not depend on them (we add them in below)
next_tag_var = forward_var + self.transitions[next_tag] #其他标签(B,I,E,Start,End)到标签next_tag的概率
best_tag_id = argmax(next_tag_var)
bptrs_t.append(best_tag_id)
viterbivars_t.append(next_tag_var[0][best_tag_id])
# Now add in the emission scores, and assign forward_var to the set
# of viterbi variables we just computed
forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1)#从step0到step(i-1)时5个序列中每个序列的最大score
backpointers.append(bptrs_t) #bptrs_t有5个元素
# Transition to STOP_TAG
terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]#其他标签到STOP_TAG的转移概率
best_tag_id = argmax(terminal_var)
path_score = terminal_var[0][best_tag_id]
# Follow the back pointers to decode the best path.
best_path = [best_tag_id]
for bptrs_t in reversed(backpointers):#从后向前走,找到一个best路径
best_tag_id = bptrs_t[best_tag_id]
best_path.append(best_tag_id)
# Pop off the start tag (we dont want to return that to the caller)
start = best_path.pop()
assert start == self.tag_to_ix[START_TAG] # Sanity check
best_path.reverse()# 把从后向前的路径正过来
return path_score, best_path
def neg_log_likelihood(self, sentence, tags):
feats = self._get_lstm_features(sentence)
forward_score = self._forward_alg(feats)
gold_score = self._score_sentence(feats, tags)
return forward_score - gold_score
def forward(self, sentence): # dont confuse this with _forward_alg above.
# Get the emission scores from the BiLSTM
lstm_feats = self._get_lstm_features(sentence)
# Find the best path, given the features.
score, tag_seq = self._viterbi_decode(lstm_feats)
return score, tag_seq
START_TAG = "<START>"
STOP_TAG = "<STOP>"
EMBEDDING_DIM = 5
HIDDEN_DIM = 4
# Make up some training data
training_data = [("the wall street journal reported today that apple corporation made money".split(), "B I I I O O O B I O O".split()),
("georgia tech is a university in georgia".split(), "B I O O O O B".split())]
word_to_ix = {}
for sentence, tags in training_data:
for word in sentence:
if word not in word_to_ix:
word_to_ix[word] = len(word_to_ix)
tag_to_ix = {"B": 0, "I": 1, "O": 2, START_TAG: 3, STOP_TAG: 4}
model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM)
optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4)
# Check predictions before training
# precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
# precheck_tags = torch.LongTensor([tag_to_ix[t] for t in training_data[0][1]])
# print(model(precheck_sent))
# Make sure prepare_sequence from earlier in the LSTM section is loaded
for epoch in range(1): # again, normally you would NOT do 300 epochs, it is toy data
for sentence, tags in training_data:
# Step 1. Remember that Pytorch accumulates gradients.
# We need to clear them out before each instance
model.zero_grad()
# Step 2. Get our inputs ready for the network, that is,
# turn them into Variables of word indices.
sentence_in = prepare_sequence(sentence, word_to_ix)
targets = torch.LongTensor([tag_to_ix[t] for t in tags])
# Step 3. Run our forward pass.
neg_log_likelihood = model.neg_log_likelihood(sentence_in, targets)
# Step 4. Compute the loss, gradients, and update the parameters by
# calling optimizer.step()
neg_log_likelihood.backward()
optimizer.step()
# Check predictions after training
precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
print(model(precheck_sent)[0]) #得分
print('^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^')
print(model(precheck_sent)[1]) #tag sequence
转:pytorch版的bilstm+crf实现sequence label的更多相关文章
- TensorFlow (RNN)深度学习 双向LSTM(BiLSTM)+CRF 实现 sequence labeling 序列标注问题 源码下载
http://blog.csdn.net/scotfield_msn/article/details/60339415 在TensorFlow (RNN)深度学习下 双向LSTM(BiLSTM)+CR ...
- PyTorch 高级实战教程:基于 BI-LSTM CRF 实现命名实体识别和中文分词
前言:译者实测 PyTorch 代码非常简洁易懂,只需要将中文分词的数据集预处理成作者提到的格式,即可很快的就迁移了这个代码到中文分词中,相关的代码后续将会分享. 具体的数据格式,这种方式并不适合处理 ...
- Pytorch Bi-LSTM + CRF 代码详解
久闻LSTM + CRF的效果强大,最近在看Pytorch官网文档的时候,看到了这段代码,前前后后查了很多资料,终于把代码弄懂了.我希望在后来人看这段代码的时候,直接就看我的博客就能完全弄懂这段代码. ...
- pytorch BiLSTM+CRF代码详解 重点
一. BILSTM + CRF介绍 https://www.jianshu.com/p/97cb3b6db573 1.介绍 基于神经网络的方法,在命名实体识别任务中非常流行和普遍. 如果你不知道Bi- ...
- pytorch实现BiLSTM+CRF用于NER(命名实体识别)
pytorch实现BiLSTM+CRF用于NER(命名实体识别)在写这篇博客之前,我看了网上关于pytorch,BiLstm+CRF的实现,都是一个版本(对pytorch教程的翻译), 翻译得一点质量 ...
- 零基础入门--中文命名实体识别(BiLSTM+CRF模型,含代码)
自己也是一个初学者,主要是总结一下最近的学习,大佬见笑. 中文分词说到命名实体抽取,先要了解一下基于字标注的中文分词.比如一句话 "我爱北京天安门”. 分词的结果可以是 “我/爱/北京/天安 ...
- 【算法】BILSTM+CRF中的条件随机场
BILSTM+CRF中的条件随机场 tensorflow中crf关键的两个函数是训练函数tf.contrib.crf.crf_log_likelihood和解码函数tf.contrib.crf.vit ...
- 高级教程: 作出动态决策和 Bi-LSTM CRF 重点
动态 VS 静态深度学习工具集 Pytorch 是一个 动态 神经网络工具包. 另一个动态工具包的例子是 Dynet (我之所以提这个是因为使用 Pytorch 和 Dynet 是十分类似的. 如果你 ...
- 记pytorch版faster rcnn配置运行中的一些坑
记pytorch版faster rcnn配置运行中的一些坑 项目地址 https://github.com/jwyang/faster-rcnn.pytorch 一般安装配置参考README.md文件 ...
随机推荐
- Azure虚机磁盘容量警报(邮件提醒)
上周有个客户提出这样的需求:根据虚拟机磁盘的实际使用量,当达到某一阈值时设置邮件提醒. 在这个需求中我们只需要解决两点问题: 计算虚拟机磁盘实际使用量 发送邮件 使用VS新建一个名为Calculate ...
- Programming internal SRAM over SWD
https://github.com/MarkDing/swd_programing_sram // // Copyright (c) 2013 SILICON LABORATORIES, INC. ...
- layer.confirm 询问框 的层遮盖
function admin_del(obj) { layer.confirm('确认要重启吗?', { btn : [ '确定', '取消' ]//按钮 }, function(index) { l ...
- 《Go学习笔记 . 雨痕》流程控制(if、switch、for range、goto、continue、break)
Go 精简(合并)了流控制语句,虽然某些时候不够便捷,但够用. if...else... 条件表达式值必须是布尔类型,可省略括号,且左花括号不能另起一行. func main() { x := 3 i ...
- DELPHI之崩溃地址排错代码查看 转
http://www.cnblogs.com/enli/archive/2009/01/15/1376540.html 最近研究了一下HOOK技术,想抓取某些游戏的包,因此需要注入DLL,结果老是有异 ...
- Java---16---多线程---死锁
死锁: 概念: 所谓死锁: 是指两个或两个以上的进程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用.它们都将无法推进下去.此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的 ...
- 移植Python2到TQ2440
环境 Python:2.7.13 开发板: TQ2440 工具链: arm-none-linux-gnueabi-gcc 4.8.3 概述 前面已经把Python3移植到TQ2440上面的,现在我们移 ...
- 自定义一个可以被序列化的泛型Dictionary<TKey,TValue>集合
Dictionary是一个键值类型的集合.它有点像数组,但Dictionary的键可以是任何类型,内部使用Hash Table存储键和值.本篇自定义一个类型安全的泛型Dictionary<TKe ...
- View Programming Guide for iOS_读书笔记
关于Window的定义的要点 Windows do not have any visible content themselves but provide a basic container for ...
- RDIFramework.NET V2.7 Web版本号升手风琴+树型文件夹(2级+)方法
级+)"界面风格,以展示多级功能菜单,满足用户的要求.Web展示效果例如以下: 要以"手风琴+树型文件夹(2级+)"的风格来展示功能模块,我们须要在"系统配置& ...