在Java中使用Kafka
Producer部分
Producer在实例化后, 对外提供send方法, 用于将数据送到指定的topic和partition; 以及在退出时需要的destroy方法.
接口 KafkaProducer.java
import java.util.List;
import java.util.Properties; public interface KafkaProducer<D> { default void init() {
}
default void destroy() {
}
boolean send(String topic, D data);
boolean send(String topic, Integer partition, D data);
boolean send(String topic, List<D> dataList);
boolean send(String topic, Integer partition, List<D> dataList); /**
* 默认配置
*/
default Properties getDefaultProps() {
Properties props = new Properties();
props.put("acks", "1");
props.put("retries", 1);
props.put("batch.size", 16384);
props.put("linger.ms", 1);
props.put("buffer.memory", 32 * 1024 * 1024L);
return props;
}
}
参数说明
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
// The acks config controls the criteria under which requests are considered complete. The "all" setting we have specified will result in blocking on the full commit of the record, the slowest but most durable setting.
props.put("acks", "all");
// If the request fails, the producer can automatically retry, though since we have specified retries as 0 it won't. Enabling retries also opens up the possibility of duplicates (see the documentation on message delivery semantics for details).
props.put("retries", 0);
// The producer maintains buffers of unsent records for each partition. These buffers are of a size specified by the batch.size config. Making this larger can result in more batching, but requires more memory (since we will generally have one of these buffers for each active partition).
props.put("batch.size", 16384);
// By default a buffer is available to send immediately even if there is additional unused space in the buffer. However if you want to reduce the number of requests you can set linger.ms to something greater than 0. This will instruct the producer to wait up to that number of milliseconds before sending a request in hope that more records will arrive to fill up the same batch.
props.put("linger.ms", 1);
// 生产者缓冲大小,当缓冲区耗尽后,额外的发送调用将被阻塞。时间超过max.block.ms将抛出TimeoutException
props.put("buffer.memory", 33554432);
// The key.serializer and value.serializer instruct how to turn the key and value objects the user provides with their ProducerRecord into bytes. You can use the included ByteArraySerializer or StringSerializer for simple string or byte types.
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
实现 KafkaProducerImpl.java
import com.google.common.base.Strings;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory; import java.util.List;
import java.util.Map;
import java.util.Properties; public class KafkaProducerImpl<D> implements KafkaProducer<D> {
private static final Logger logger = LoggerFactory.getLogger(KafkaProducerImpl.class);
private final Producer<D, D> producer; public KafkaProducerImpl() {
Properties props = this.getDefaultProps();
props.put("bootstrap.servers", servers);
props.put("key.serializer", serializer);
props.put("value.serializer", serializer);
producer = new org.apache.kafka.clients.producer.KafkaProducer<>(props);
} @Override
public void destroy() {
if (producer != null) {
producer.close();
}
} @Override
public boolean send(String topic, D data) {
boolean isSuc = true;
try {
producer.send(new ProducerRecord<>(topic, data));
} catch (Exception e) {
isSuc = false;
logger.error(String.format("KafkaStringProducer send error.topic:[%s],data:[%s]", topic, data), e);
}
return isSuc;
} @Override
public boolean send(String topic, Integer partition, D data) {
boolean isSuc = true;
try {
producer.send(new ProducerRecord<>(topic, partition, null, data));
} catch (Exception e) {
isSuc = false;
logger.error(String.format("KafkaStringProducer send error.topic:[%s],data:[%s]", topic, data), e);
}
return isSuc;
} @Override
public boolean send(String topic, List<D> dataList) {
boolean isSuc = true;
try {
if (dataList != null) {
dataList.forEach(item -> producer.send(new ProducerRecord<>(topic, item)));
}
} catch (Exception e) {
isSuc = false;
logger.error(String.format("KafkaStringProducer send error.topic:[%s],dataList:[%s]", topic, dataList), e);
}
return isSuc;
} @Override
public boolean send(String topic, Integer partition, List<D> dataList) {
boolean isSuc = true;
try {
if (dataList != null) {
dataList.forEach(item -> producer.send(new ProducerRecord<>(topic, partition, null, item)));
}
} catch (Exception e) {
isSuc = false;
logger.error(String.format("KafkaStringProducer send error.topic:[%s],partition[%s],dataList:[%s]", topic, partition, dataList), e);
}
return isSuc;
}
}
Consumer 部分
Consumer 在实例化后, 负责将ConsumerListener添加到列表, 并订阅指定的topic, 启动一个阻塞的循环, 在收到消息后依次调用ConsumerListener进行处理
接口 KafkaConsumer.java
import java.util.Properties;
public interface KafkaConsumer {
default void init() {
}
default void destroy() {
}
void start();
/**
* 默认配置
*/
default Properties getDefaultProps() {
Properties props = new Properties();
props.put("enable.auto.commit", "true");
props.put("auto.commit.interval.ms", "1000");
props.put("session.timeout.ms", "30000");
return props;
}
}
参数说明
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("group.id", "test");
// Setting enable.auto.commit means that offsets are committed automatically with a frequency controlled by the config auto.commit.interval.ms.
props.put("enable.auto.commit", "true");
props.put("auto.commit.interval.ms", "1000");
// The deserializer settings specify how to turn bytes into objects. For example, by specifying string deserializers, we are saying that our record's key and value will just be simple strings.
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
// This consumer is subscribing to the topics foo and bar as part of a group of consumers called test as configured with group.id.
consumer.subscribe(Arrays.asList("foo", "bar"));
while (true) {
ConsumerRecords<String, String> records = consumer.poll(100);
for (ConsumerRecord<String, String> record : records)
System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
}
实现 KafkaConsumerImpl.java
import com.google.common.base.Strings;
import org.apache.kafka.clients.consumer.Consumer;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory; import java.util.*; public class KafkaConsumerImpl<K, V> implements KafkaConsumer {
private static final Logger logger = LoggerFactory.getLogger(KafkaConsumerImpl.class);
private final List<KafkaConsumerListener<K, V>> consumerListeners = new ArrayList<>();
private Consumer<K, V> consumer;
private boolean running = true; private final int waitingTimeout = 100; public KafkaConsumerImpl(String topic, String groupId, String deserializer) {
Properties props = this.getDefaultProps();
props.put("group.id", groupId);
props.put("bootstrap.servers", servers);
props.put("key.deserializer", deserializer);
props.put("value.deserializer", deserializer);
consumer = new org.apache.kafka.clients.consumer.KafkaConsumer<>(props);
consumer.subscribe(Arrays.asList(topic));
} public void setConsumerListeners(List<KafkaConsumerListener<K, V>> consumerListeners) {
synchronized (this) {
this.consumerListeners.clear();
if (null != consumerListeners && 0 != consumerListeners.size()) {
consumerListeners.forEach(this.consumerListeners::add);
}
}
} public void addConsumerListener(KafkaConsumerListener<K, V> consumerListener) {
synchronized (this) {
if (null != consumerListener && !this.consumerListeners.contains(consumerListener)) {
this.consumerListeners.add(consumerListener);
}
}
} public void removeConsumerListener(KafkaConsumerListener<K, V> consumerListener) {
synchronized (this) {
if (null != consumerListener && this.consumerListeners.contains(consumerListener)) {
this.consumerListeners.remove(consumerListener);
}
}
} @Override
public void init() {
this.start();
} @Override
public void destroy() {
running = false;
} @Override
public void start() {
new Thread(() -> {
while (running) {
ConsumerRecords<K, V> records = consumer.poll(waitingTimeout);
for (ConsumerRecord<K, V> record : records) {
if (consumerListeners != null) {
K key = record.key();
if (key == null)
consumerListeners.forEach(consumer -> consumer.consume(record.value()));
else
consumerListeners.forEach(consumer -> consumer.consume(record.key(), record.value()));
}
}
}
//should use consumer in different thread, or it will throw ConcurrentModificationException
if (consumer != null) {
try {
logger.info("start to close consumer.");
consumer.close();
} catch (Exception e) {
logger.error("close kafka consumer error.", e);
}
consumer = null;
}
}).start();
}
}
接口 KafkaConsumerListener.java
public interface KafkaConsumerListener<K, V> {
void consume(V value);
default void consume(K key, V value) {
consume(value);
}
}
.
在Java中使用Kafka的更多相关文章
- 精选干货 在java中创建kafka
这个详细的教程将帮助你创建一个简单的Kafka生产者,该生产者可将记录发布到Kafka集群. 通过优锐课的java学习架构分享中,在本教程中,我们将创建一个简单的Java示例,该示例创建一个Kafka ...
- Java中的Unsafe类111
1.Unsafe类介绍 Unsafe类是在sun.misc包下,不属于Java标准.但是很多Java的基础类库,包括一些被广泛使用的高性能开发库都是基于Unsafe类开发的,比如Netty.Hadoo ...
- Java 中的纤程库 – Quasar
来源:鸟窝, colobu.com/2016/07/14/Java-Fiber-Quasar/ 如有好文章投稿,请点击 → 这里了解详情 最近遇到的一个问题大概是微服务架构中经常会遇到的一个问题: 服 ...
- spark streaming中维护kafka偏移量到外部介质
spark streaming中维护kafka偏移量到外部介质 以kafka偏移量维护到redis为例. redis存储格式 使用的数据结构为string,其中key为topic:partition, ...
- CentOS中配置Kafka集群
环境:三台虚拟机Host0,Host1,Host2 Host0:192.168.10.2 Host1: 192.168.10.3 Host2: 192.168.10.4 在三台虚拟机上配置zook ...
- 1.1 Introduction中 Apache Kafka™ is a distributed streaming platform. What exactly does that mean?(官网剖析)(博主推荐)
不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Apache Kafka™ is a distributed streaming p ...
- CentOS7安装CDH 第九章:CDH中安装Kafka
相关文章链接 CentOS7安装CDH 第一章:CentOS7系统安装 CentOS7安装CDH 第二章:CentOS7各个软件安装和启动 CentOS7安装CDH 第三章:CDH中的问题和解决方法 ...
- SUSE中搭建kafka
搭建环境: JDK: java version 1.8.0_221 zookeeper:zookeeper-3.5.2 kafka: kafka-2.11-1.1.0 一.安装JDK 由于需要jav ...
- Springboot中使用kafka
注:kafka消息队列默认采用配置消息主题进行消费,一个topic中的消息只能被同一个组(groupId)的消费者中的一个消费者消费. 1.在pom.xml依赖下新添加一下kafka依赖ar包 < ...
随机推荐
- go语言之进阶篇Ticker的使用
Ticker是一个定时触发的计时器,它会以一个间隔(interval)往channel发送一个事件(当前时间),而channel的接收者可以以固定的时间间隔从channel中读取事件. 1.Ticke ...
- UML图与软件开发过程那点关系
首先,软工文档, 软工文档,也就是计划,设计,描述,使用软件的一些文件,它最大的特点就是固定不变,用来给不同的人和计算机来阅读.在期间,文档起到了桥梁的作用,看这张图很形象: 在这里在看一下国家统一规 ...
- layer-list shape drawable 层叠背景 MD
Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...
- Ios开发之Category
Category是在不改变已存在类的情况下,对其添加方法来达到对类进行功能扩展的目的. 对类功能进行拓展的时候,我们会有多种方式,比如说可以通过继承也可以进行功能扩展,但是在Category和继承上我 ...
- Vs2013 坑爹的Target framework问题
之前的一个项目是使用Vs2008来开发的,因为这段时间家里有事情所以只能跟经理协商在家里来做此项目,因为家里的VS是2013的所以在迁移时没有什么问题 但今天我更改一个类库的文件后重新生成解决方案结果 ...
- SQLSERVER 免费对比数据库结构和数据的工具支持:SQL Server 2012, SQL Server 2008 and SQL Server 2005
New xSQL Schema Compare - version 5 Compare the schemas of two SQL Server databases, review differen ...
- 使用nginx反向代理到不同服务器(共享同一端口)配置文件
使用nginx反向代理到不同服务器(共享同一端口)配置文件 https://blog.csdn.net/wang_k_123/article/details/72779443 https://www. ...
- DOpus 10.5 使用帮助
在线手册 http://www.dearopus.com/ http://resource.dopus.com/ http://www.gpsoft.com.au/help/opus10/ 应急截图编 ...
- iOS 在不添加库的情况下 通过抽象类来获取自己想要的方法
#define SYSTEM_VERSION_MORE_THAN_BFDATA(v) ([[[UIDevice currentDevice] systemVersion] compare:v opti ...
- jQuery页面滚动图片等元素动态加载实现
一.关于滚动显屏加载 常常会有这样子的页面,内容很丰富,页面很长,图片较多.比如说光棍节很疯狂的淘宝商城页面. 或者是前段时间写血本买了个高档耳机的京东商城页面,或者是新浪微博之类. 这些页面图片数量 ...