http://poj.org/problem?id=1681

题意:
有一块只有黄白颜色的n*n的板子,每次刷一块格子时,上下左右都会改变颜色,求最少刷几次可以使得全部变成黄色。

思路:

这道题目也就是要处理自由变元,如果自由变元为0,那么刷法是唯一的,如果有多个自由变元,那么可以有多种刷法,需要枚举处理。

借鉴了kuangbin大神的高斯消元模板,写得真的是好。

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<sstream>
#include<vector>
#include<stack>
#include<queue>
#include<cmath>
#include<map>
#include<set>
using namespace std;
typedef long long ll;
typedef pair<int,int> pll;
const int INF = 0x3f3f3f3f;
const int maxn = + ; int n;
int equ,var; //equ个方程,var个变元
int x[maxn]; //解集
int a[maxn][maxn]; //矩阵
int free_x[maxn]; //存储自由变元
int free_num; //自由变元的个数 //返回值为-1表示无解,为0表示唯一解,否则返回自由变元个数
int Gauss()
{
int max_r,col,k;
free_num=;
for(k=,col=; k<equ && col<var; k++,col++)
{
max_r=k;
for(int i=k+;i<equ;i++)
{
if(abs(a[i][col])>abs(a[max_r][col]))
max_r=i;
}
if(a[max_r][col]==)
{
k--;
free_x[free_num++]=col; //这个是自由变元;
continue;
}
if(max_r!=k)
{
for(int j=col; j<var+; j++)
swap(a[k][j],a[max_r][j]);
}
for(int i=k+;i<equ;i++)
{
if(a[i][col]!=)
{
for(int j=col;j<var+;j++)
a[i][j]^=a[k][j];
}
}
}
for(int i=k;i<equ;i++)
if(a[i][col]!=) return -; //无解
if(k<var) return var-k; //有多解时返回自由变元个数
//唯一解,回代
for(int i=var-; i>= ;i--)
{
x[i]=a[i][var];
for(int j=i+; j<var; j++)
x[i]^=(a[i][j] && x[j]);
}
return ;
} void print(int t)
{
if(t==-) puts("inf");
else if(t==)
{
int ans=;
for(int i=;i<n*n;i++) ans+=x[i];
printf("%d\n",ans);
}
else
{
//枚举自由变元
int ans=INF;
for(int i=;i<(<<t);i++)
{
int cnt=;
for(int j=;j<t;j++)
{
if(i&(<<j))
{
x[free_x[j]]=;
cnt++;
}
else x[free_x[j]]=;
}
for(int j=var-t-;j>=;j--)
{
int idx;
for(idx=j; idx<var; idx++)
if(a[j][idx]) break;
x[idx]=a[j][var];
for(int l=idx+; l<var; l++)
if(a[j][l]) x[idx]^=x[l];
cnt+=x[idx];
}
ans=min(ans,cnt);
}
printf("%d\n",ans);
}
} int main()
{
//freopen("in.txt","r",stdin);
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
memset(a,,sizeof(a)); for(int i=;i<n*n;i++)
{
a[i][i]=;
if(i/n) a[i-n][i]=;
if(i/n<n-) a[i+n][i]=;
if(i%n) a[i-][i]=;
if(i%n<n-) a[i+][i]=;
} char s[];
for(int i=;i<n;i++)
{
scanf("%s",s);
for(int j=;j<n;j++)
{
if(s[j]=='y') a[i*n+j][n*n]=;
else a[i*n+j][n*n]=;
}
} memset(x,,sizeof(x));
equ=var=n*n;
print(Gauss());
}
return ;
}

POJ 1681 Painter's Problem(高斯消元+枚举自由变元)的更多相关文章

  1. POJ 1681 Painter's Problem (高斯消元)

    题目链接 题意:有一面墙每个格子有黄白两种颜色,刷墙每次刷一格会将上下左右中五个格子变色,求最少的刷方法使得所有的格子都变成yellow. 题解:通过打表我们可以得知4*4的一共有4个自由变元,那么我 ...

  2. POJ 1681 Painter's Problem [高斯消元XOR]

    同上题 需要判断无解 需要求最小按几次,正确做法是枚举自由元的所有取值来遍历变量的所有取值取合法的最小值,然而听说数据太弱自由元全0就可以就水过去吧.... #include <iostream ...

  3. POJ 1753 Flip Game (高斯消元 枚举自由变元求最小步数)

    题目链接 题意:4*4的黑白棋,求把棋全变白或者全变黑的最小步数. 分析:以前用状态压缩做过. 和上题差不多,唯一的不同是这个终态是黑棋或者白棋, 但是只需要把给的初态做不同的两次处理就行了. 感觉现 ...

  4. POJ 1681 高斯消元 枚举自由变元

    题目和poj1222差不多,但是解法有一定区别,1222只要求出任意一解,而本题需要求出最少翻转次数.所以需要枚举自由变元,变元数量为n,则枚举的次数为1<<n次 #include < ...

  5. POJ 1681 Painter's Problem (高斯消元 枚举自由变元求最小的步数)

    题目链接 题意: 一个n*n 的木板 ,每个格子 都 可以 染成 白色和黄色,( 一旦我们对也个格子染色 ,他的上下左右 都将改变颜色): 给定一个初始状态 , 求将 所有的 格子 染成黄色 最少需要 ...

  6. poj 3185 The Water Bowls 高斯消元枚举变元

    题目链接 给一行0 1 的数, 翻转一个就会使他以及它左右两边的都变, 求最少多少次可以变成全0. 模板题. #include <iostream> #include <vector ...

  7. POJ 1681 Painter's Problem 【高斯消元 二进制枚举】

    任意门:http://poj.org/problem?id=1681 Painter's Problem Time Limit: 1000MS   Memory Limit: 10000K Total ...

  8. poj 1681 Painter&#39;s Problem(高斯消元)

    id=1681">http://poj.org/problem? id=1681 求最少经过的步数使得输入的矩阵全变为y. 思路:高斯消元求出自由变元.然后枚举自由变元,求出最优值. ...

  9. poj 1681 Painter's Problem

    Painter's Problem 题意:给一个n*n(1 <= n <= 15)具有初始颜色(颜色只有yellow&white两种,即01矩阵)的square染色,每次对一个方格 ...

随机推荐

  1. 实习培训——Java基础(4)

    实习培训——Java基础(4) 1 多态 多态是同一个行为具有多个不同表现形式或形态的能力. 多态就是同一个接口,使用不同的实例而执行不同操作,多态性是对象多种表现形式的体现. 现实中,比如我们按下 ...

  2. hduPiggy-Bank(完全背包)

    http://acm.hdu.edu.cn/showproblem.php?pid=1114 此题就是最简单的完全背包,顺序!!! for i=1..N for v=0..V f[v]=max{f[v ...

  3. categoriy 重写函数会怎样?

    From comp.lang.objective-C FAQ listing: "What if multiple categories implement the same method? ...

  4. sql server数字转字符串出现科学计数法

    在从excel往sql server导入数据,电话.编号等数字呈现float类型,然后向b表中insert后(phone为nvarchar)出现科学计数法,解决方法:需将float等数据类型转为标准的 ...

  5. LCD驱动

    LCD的驱动情况比较多. 对于一般的LCD,驱动方式有MCU,MPU,SPI等.其中MCU方式不需要输入clk,vsync,hsync等信号.完全可以通过异步来驱动,但是这样难以将屏 幕做到很大.MP ...

  6. HDU 2235

    这题说的是给了一个 平面 然后又很多的长方体柱子 问这个 容器的 容积是什么, 排序后 然后 进行 并查集 判断是否 可以有比他小的高度依靠他算体积,通过并查集去判断他的子集的个数. #include ...

  7. ADO.NET知识学习总结

      1. 概述 使用的命名空间: System.Data.SqlClient 连接字符串    服务器/数据库实例+数据库名称+安全信息+用户名+密码  可参考http://www.connectio ...

  8. c++第十七天

    p101~p104: 1.数组中的元素个数也属于数组类型的一部分. 2.编译的时候数组的维度应该是已知的,也就是说维度必须是 const expression 3.const expression 是 ...

  9. bzoj1704 / P2882 [USACO07MAR]面对正确的方式Face The Right Way

    P2882 [USACO07MAR]面对正确的方式Face The Right Way $n<=5000$?枚举翻转长度,顺序模拟就ok了 对于每次翻转,我们可以利用差分的思想,再搞搞前缀和. ...

  10. Python3.x:抓取百事糗科段子

    Python3.x:抓取百事糗科段子 实现代码: #Python3.6 获取糗事百科的段子 import urllib.request #导入各类要用到的包 import urllib import ...