#coding=utf8
# 从sklearn.datasets导入波士顿房价数据读取器。
from sklearn.datasets import load_boston
# 从sklearn.model_selection中导入train_test_split用于数据分割。
from sklearn.model_selection import train_test_split
# 导入numpy并重命名为np。
import numpy as np
# 从sklearn.preprocessing导入数据标准化模块。
from sklearn.preprocessing import StandardScaler

# 从读取房价数据存储在变量boston中。
boston = load_boston()
X = boston.data
y = boston.target

# 随机采样25%的数据构建测试样本,其余作为训练样本。
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)

# 分别初始化对特征和目标值的标准化器。
ss_X = StandardScaler()
ss_y = StandardScaler()

# 分别对训练和测试数据的特征以及目标值进行标准化处理。
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)

y_train = ss_y.fit_transform(y_train)
y_test = ss_y.transform(y_test)

# 从sklearn.linear_model导入LinearRegression。
from sklearn.linear_model import LinearRegression

# 使用默认配置初始化线性回归器LinearRegression。
lr = LinearRegression()
# 使用训练数据进行参数估计。
lr.fit(X_train, y_train)
# 对测试数据进行回归预测。
lr_y_predict = lr.predict(X_test)
# 使用LinearRegression模型自带的评估模块,并输出评估结果。
print 'The value of default measurement of LinearRegression is', lr.score(X_test, y_test)

# 从sklearn.metrics依次导入r2_score、mean_squared_error以及mean_absoluate_error用于回归性能的评估。
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error

# 使用r2_score模块,并输出评估结果。
print 'The value of R-squared of LinearRegression is', r2_score(y_test, lr_y_predict)

# 使用mean_squared_error模块,并输出评估结果。
print 'The mean squared error of LinearRegression is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))

# 使用mean_absolute_error模块,并输出评估结果。
print 'The mean absoluate error of LinearRegression is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))

# 从sklearn.linear_model导入SGDRegressor。
from sklearn.linear_model import SGDRegressor

# 使用默认配置初始化线性回归器SGDRegressor。
sgdr = SGDRegressor()
# 使用训练数据进行参数估计。
sgdr.fit(X_train, y_train)
# 对测试数据进行回归预测。
sgdr_y_predict = sgdr.predict(X_test)
# 使用SGDRegressor模型自带的评估模块,并输出评估结果。
print 'The value of default measurement of SGDRegressor is', sgdr.score(X_test, y_test)

# 使用r2_score模块,并输出评估结果。
print 'The value of R-squared of SGDRegressor is', r2_score(y_test, sgdr_y_predict)

# 使用mean_squared_error模块,并输出评估结果。
print 'The mean squared error of SGDRegressor is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(sgdr_y_predict))

# 使用mean_absolute_error模块,并输出评估结果。
print 'The mean absoluate error of SGDRegressor is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(sgdr_y_predict))

类似:

chapter02 回归模型在''美国波士顿房价预测''问题中实践的更多相关文章

  1. SPSS分析技术:无序多元Logistic回归模型;美国总统大选的预测历史及预测模型

    SPSS分析技术:无序多元Logistic回归模型:美国总统大选的预测历史及预测模型 在介绍有序多元Logistic回归分析的理论基础时,介绍过该模型公式有一个非常重要的假设,就是自变量对因变量多个类 ...

  2. 波士顿房价预测 - 最简单入门机器学习 - Jupyter

    机器学习入门项目分享 - 波士顿房价预测 该分享源于Udacity机器学习进阶中的一个mini作业项目,用于入门非常合适,刨除了繁琐的部分,保留了最关键.基本的步骤,能够对机器学习基本流程有一个最清晰 ...

  3. 机器学习实战二:波士顿房价预测 Boston Housing

    波士顿房价预测 Boston housing 这是一个波士顿房价预测的一个实战,上一次的Titantic是生存预测,其实本质上是一个分类问题,就是根据数据分为1或为0,这次的波士顿房价预测更像是预测一 ...

  4. Tensorflow之多元线性回归问题(以波士顿房价预测为例)

    一.根据波士顿房价信息进行预测,多元线性回归+特征数据归一化 #读取数据 %matplotlib notebook import tensorflow as tf import matplotlib. ...

  5. 《用Python玩转数据》项目—线性回归分析入门之波士顿房价预测(二)

    接上一部分,此篇将用tensorflow建立神经网络,对波士顿房价数据进行简单建模预测. 二.使用tensorflow拟合boston房价datasets 1.数据处理依然利用sklearn来分训练集 ...

  6. 【udacity】机器学习-波士顿房价预测小结

    Evernote Export 机器学习的运行步骤 1.导入数据 没什么注意的,成功导入数据集就可以了,打印看下数据的标准格式就行 用个info和describe 2.分析数据 这里要详细分析数据的内 ...

  7. 基于sklearn的波士顿房价预测_线性回归学习笔记

    > 以下内容是我在学习https://blog.csdn.net/mingxiaod/article/details/85938251 教程时遇到不懂的问题自己查询并理解的笔记,由于sklear ...

  8. 【udacity】机器学习-波士顿房价预测

    import numpy as np import pandas as pd from Udacity.model_check.boston_house_price import visuals as ...

  9. AdaBoost 算法-分析波士顿房价数据集

    公号:码农充电站pro 主页:https://codeshellme.github.io 在机器学习算法中,有一种算法叫做集成算法,AdaBoost 算法是集成算法的一种.我们先来看下什么是集成算法. ...

随机推荐

  1. Django 综合篇

    前面,已经将Django最主要的五大系统介绍完毕,除了这些主要章节,还有很多比较重要的内容,比如开发流程相关.安全.本地化与国际化.常见工具和一些框架核心功能.这些内容的篇幅都不大,但整合起来也是Dj ...

  2. 《A_Pancers团队》———团队项目原型设计与开发

    一.实验目的与要求 (1)掌握软件原型开发技术: (2)学习使用软件原型开发工具:本实验中使用墨刀 二.实验内容与步骤 任务1:针对实验六团队项目选题,采用适当的原型开发工具设计团队项目原型: 任务2 ...

  3. Codeforces 447D - DZY Loves Modification

    447D - DZY Loves Modification 思路:将行和列分开考虑.用优先队列,计算出行操作i次的幸福值r[i],再计算出列操作i次的幸福值c[i].然后将行取i次操作和列取k-i次操 ...

  4. 新的请求方式 fetch和axios

    参考链接:https://www.javascriptcn.com/read-5840.html axios使用文档: https://www.kancloud.cn/yunye/axios/2348 ...

  5. Python 爬虫-图片的爬取

    2017-07-25 22:49:21 import requests import os url = 'https://wallpapers.wallhaven.cc/wallpapers/full ...

  6. android--------Android Studio常见问题以及解决方式

    gradle build的时候出现的问题: Error:Execution failed for task ':app:packageDebug'. Duplicate files copied in ...

  7. 我的Java学习笔记 -开发环境搭建

    开始学习Java~ 一.Java简介 Java编程语言是一种简单.面向对象.分布式.解释型.健壮安全.与系统无关.可移植.高性能.多线程和动态的语言. Java分为三个体系: JavaSE(J2SE) ...

  8. Dajngo的CBV和FBV

    CBV: class. base. view 路由: url(r'students/', views.StudentsView.as_view()) 视图: from django.views imp ...

  9. UVA-1626 Brackets sequence (简单区间DP)

    题目大意:给一个有小括号和中括号组成的序列,满足题中的三个条件时,是合法的.不满足时是不合法的,问将一个不合法的序列最少添加几个括号可以使之变成合法的.输出最短合法序列. 题目分析:这是<入门经 ...

  10. 页面跳转 Server.Transfer和 Response.Redirect的区别

    1.Server.Transfer 用于把处理的控制权从一个页面转移到另一个页面,在转移的工程中没有离开服务器内部控件(如request,session等)保存的信息不变.因此你能从a页面跳转到b页面 ...