chapter02 回归模型在''美国波士顿房价预测''问题中实践
#coding=utf8 # 从sklearn.datasets导入波士顿房价数据读取器。 from sklearn.datasets import load_boston # 从sklearn.model_selection中导入train_test_split用于数据分割。 from sklearn.model_selection import train_test_split # 导入numpy并重命名为np。 import numpy as np # 从sklearn.preprocessing导入数据标准化模块。 from sklearn.preprocessing import StandardScaler # 从读取房价数据存储在变量boston中。 boston = load_boston() X = boston.data y = boston.target # 随机采样25%的数据构建测试样本,其余作为训练样本。 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25) # 分别初始化对特征和目标值的标准化器。 ss_X = StandardScaler() ss_y = StandardScaler() # 分别对训练和测试数据的特征以及目标值进行标准化处理。 X_train = ss_X.fit_transform(X_train) X_test = ss_X.transform(X_test) y_train = ss_y.fit_transform(y_train) y_test = ss_y.transform(y_test) # 从sklearn.linear_model导入LinearRegression。 from sklearn.linear_model import LinearRegression # 使用默认配置初始化线性回归器LinearRegression。 lr = LinearRegression() # 使用训练数据进行参数估计。 lr.fit(X_train, y_train) # 对测试数据进行回归预测。 lr_y_predict = lr.predict(X_test) # 使用LinearRegression模型自带的评估模块,并输出评估结果。 print 'The value of default measurement of LinearRegression is', lr.score(X_test, y_test) # 从sklearn.metrics依次导入r2_score、mean_squared_error以及mean_absoluate_error用于回归性能的评估。 from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error # 使用r2_score模块,并输出评估结果。 print 'The value of R-squared of LinearRegression is', r2_score(y_test, lr_y_predict) # 使用mean_squared_error模块,并输出评估结果。 print 'The mean squared error of LinearRegression is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)) # 使用mean_absolute_error模块,并输出评估结果。 print 'The mean absoluate error of LinearRegression is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)) # 从sklearn.linear_model导入SGDRegressor。 from sklearn.linear_model import SGDRegressor # 使用默认配置初始化线性回归器SGDRegressor。 sgdr = SGDRegressor() # 使用训练数据进行参数估计。 sgdr.fit(X_train, y_train) # 对测试数据进行回归预测。 sgdr_y_predict = sgdr.predict(X_test) # 使用SGDRegressor模型自带的评估模块,并输出评估结果。 print 'The value of default measurement of SGDRegressor is', sgdr.score(X_test, y_test) # 使用r2_score模块,并输出评估结果。 print 'The value of R-squared of SGDRegressor is', r2_score(y_test, sgdr_y_predict) # 使用mean_squared_error模块,并输出评估结果。 print 'The mean squared error of SGDRegressor is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(sgdr_y_predict)) # 使用mean_absolute_error模块,并输出评估结果。 print 'The mean absoluate error of SGDRegressor is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(sgdr_y_predict))
类似:
chapter02 回归模型在''美国波士顿房价预测''问题中实践的更多相关文章
- SPSS分析技术:无序多元Logistic回归模型;美国总统大选的预测历史及预测模型
SPSS分析技术:无序多元Logistic回归模型:美国总统大选的预测历史及预测模型 在介绍有序多元Logistic回归分析的理论基础时,介绍过该模型公式有一个非常重要的假设,就是自变量对因变量多个类 ...
- 波士顿房价预测 - 最简单入门机器学习 - Jupyter
机器学习入门项目分享 - 波士顿房价预测 该分享源于Udacity机器学习进阶中的一个mini作业项目,用于入门非常合适,刨除了繁琐的部分,保留了最关键.基本的步骤,能够对机器学习基本流程有一个最清晰 ...
- 机器学习实战二:波士顿房价预测 Boston Housing
波士顿房价预测 Boston housing 这是一个波士顿房价预测的一个实战,上一次的Titantic是生存预测,其实本质上是一个分类问题,就是根据数据分为1或为0,这次的波士顿房价预测更像是预测一 ...
- Tensorflow之多元线性回归问题(以波士顿房价预测为例)
一.根据波士顿房价信息进行预测,多元线性回归+特征数据归一化 #读取数据 %matplotlib notebook import tensorflow as tf import matplotlib. ...
- 《用Python玩转数据》项目—线性回归分析入门之波士顿房价预测(二)
接上一部分,此篇将用tensorflow建立神经网络,对波士顿房价数据进行简单建模预测. 二.使用tensorflow拟合boston房价datasets 1.数据处理依然利用sklearn来分训练集 ...
- 【udacity】机器学习-波士顿房价预测小结
Evernote Export 机器学习的运行步骤 1.导入数据 没什么注意的,成功导入数据集就可以了,打印看下数据的标准格式就行 用个info和describe 2.分析数据 这里要详细分析数据的内 ...
- 基于sklearn的波士顿房价预测_线性回归学习笔记
> 以下内容是我在学习https://blog.csdn.net/mingxiaod/article/details/85938251 教程时遇到不懂的问题自己查询并理解的笔记,由于sklear ...
- 【udacity】机器学习-波士顿房价预测
import numpy as np import pandas as pd from Udacity.model_check.boston_house_price import visuals as ...
- AdaBoost 算法-分析波士顿房价数据集
公号:码农充电站pro 主页:https://codeshellme.github.io 在机器学习算法中,有一种算法叫做集成算法,AdaBoost 算法是集成算法的一种.我们先来看下什么是集成算法. ...
随机推荐
- Oracle 千万级别数据查询优化
说明:平时很少接触到大数据分页,今天有兴趣在数据库插入1000万条数据进行测试,经过查询相关资料得到如下说明:笔者在工作中有一上百万条记录的表,在jsp页面中需对该表进行分页显示,便考虑用rownum ...
- 微信小程序跳到h5,h5在跳回小程序
1.在微信小程序后台: 设置->开发设置->业务域名: 添加业务逻辑域名 2.在html5页面添加如下代码: <! -- html --> < script type=& ...
- illumina phix
PhiX Control v3 is a reliable, adapter-ligated library used as a control for Illumina sequencing run ...
- Linux系统基本常识
在虚拟机里装一个Linux(centos),有时间可以装个mac玩一下.(使用centos或者Ubuntu时安装软件将会非常方便) ifconfig –a 显示当前Linux主机的 ip 地址 如何让 ...
- 3-30 flash(api),rescue_from(); logger简介
ActionDispatch::Flash < Objec pass temporary primitive-types (String, Array, Hash) between action ...
- Andriod的Http请求获取Cookie信息并同步保存,使第二次不用登录也可查看个人信息
Android使用Http请求登录,则通过登录成功获取Cookie信息并同步,可以是下一次不用登录也可以查看到个人信息, 注:如果初始化加载登录,可通过缓存Cookie信息来验证是否要加载登录界面.C ...
- Confluence 6 获得 Active Directory 服务器证书
上面的步骤说明了如何在你的 Microsoft Active Directory服务器上安装 certification authority (CA).这一步,你需要为你的 Microsoft Act ...
- Oracle 小函数的使用
1.Oracle 正则表达式 经常会有一种需求是查询某个字符在字符串中的数量,可以使用正则表达式regexp_count函数 比如 SELECT regexp_count('0,1,1',',') f ...
- JavaScript学习总结(十)——this关键字
1 <script type="text/javascript"> 2 function Person(){ 3 /*使用var 属性名定义的属性是类的私有属性,外界无 ...
- spring boot 学习(十四)SpringBoot+Redis+SpringSession缓存之实战
SpringBoot + Redis +SpringSession 缓存之实战 前言 前几天,从师兄那儿了解到EhCache是进程内的缓存框架,虽然它已经提供了集群环境下的缓存同步策略,这种同步仍然需 ...