题目大意:给一个全是小写字母的字符串,判断最少可分为几个回文子序列。如:“aaadbccb” 最少能分为 “aaa” “d” “bccb” 共三个回文子序列,又如 “aaa” 最少能分为 1 个回文子序列。

题目解析:状态转移方程 dp[i]=min(dp[j]+1) ,  其中,j -> i 是回文子序列。dp[i]表示到标号为 i 的字符,最少可分为几个回文子序列。

现在想想,这道题并不算难!!!!!!!!

代码如下:

 # include<iostream>
# include<cstdio>
# include<string>
# include<cstring>
# include<algorithm>
using namespace std;
int dp[];
string p;
bool is(int x,int y)
{
while(x<y){
if(p[x]!=p[y])
return false;
++x,--y;
}
return true;
}
void work()
{
int n=p.size();
for(int i=;i<n;++i){
dp[i]=i+;
for(int j=;j<=i;++j){
if(is(j,i))
dp[i]=min(dp[j-]+,dp[i]);
}
}
printf("%d\n",dp[n-]);
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
cin>>p;
work();
}
return ;
}

UVA-11584 Partitioning by Palindromes (简单线性DP)的更多相关文章

  1. UVa 11584 - Partitioning by Palindromes(线性DP + 预处理)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  2. UVa 11584 Partitioning by Palindromes (简单DP)

    题意:给定一个字符串,求出它最少可分成几个回文串. 析:dp[i] 表示前 i 个字符最少可分成几个回文串,dp[i] = min{ 1 + dp[j-1] | j-i是回文}. 代码如下: #pra ...

  3. uva 11584 Partitioning by Palindromes 线性dp

    // uva 11584 Partitioning by Palindromes 线性dp // // 题目意思是将一个字符串划分成尽量少的回文串 // // f[i]表示前i个字符能化成最少的回文串 ...

  4. UVA - 11584 Partitioning by Palindromes[序列DP]

    UVA - 11584 Partitioning by Palindromes We say a sequence of char- acters is a palindrome if it is t ...

  5. 区间DP UVA 11584 Partitioning by Palindromes

    题目传送门 /* 题意:给一个字符串,划分成尽量少的回文串 区间DP:状态转移方程:dp[i] = min (dp[i], dp[j-1] + 1); dp[i] 表示前i个字符划分的最少回文串, 如 ...

  6. UVA 11584 - Partitioning by Palindromes DP

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  7. UVa 11584 Partitioning by Palindromes【DP】

    题意:给出一个字符串,问最少能够划分成多少个回文串 dp[i]表示以第i个字母结束最少能够划分成的回文串的个数 dp[i]=min(dp[i],dp[j]+1)(如果从第j个字母到第i个字母是回文串) ...

  8. 【线性结构上的动态规划】UVa 11584 - Partitioning by Palindromes

    回文串问题.给出一个字符串,问最少可以划分为多少个字符串子串. 对于判断是否为回文串,对于不是很长的字符串,可以采取直接暴力,即从两边向中间收缩判断字符相等. bool is_pali(int l, ...

  9. UVA 11584 Partitioning by Palindromes (字符串区间dp)

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  10. UVA 11584 "Partitioning by Palindromes"(DP+Manacher)

    传送门 •题意 •思路一 定义 dp[i] 表示 0~i 的最少划分数: 首先,用马拉车算法求解出回文半径数组: 对于第 i 个字符 si,遍历 j (0 ≤ j < i),判断以 j 为回文中 ...

随机推荐

  1. web前端----jQuery事件

    事件 常用事件 click(function(){...}) hover(function(){...}) blur(function(){...}) focus(function(){...}) c ...

  2. docker简单操作

    下载镜像docker pull httpd(镜像名) 查看镜像:docker images 做容器 docker run -ti -v(映射)/www:发布目录的路径 -p 80:80 --name ...

  3. python的时间处理-time模块

    time模块 时间的表示方法有三种: 时间戳:表示的是从1970年1月1日0点至今的秒数 格式化字符串表示:这种表示更习惯我们通常的读法,如2018-04-24 00:00:00 格式化元祖表示:是一 ...

  4. 通过例子来理解python闭包。

    闭包:就是内部函数对enclosing作用域的变量进行引用.(可先参考python函数作用域LEGB) 通过一个例子体会 def func_150(val): passline = 90 if val ...

  5. babun安装,整合到cmder

    babun Babun的特性: 预装了Cygwin以及许多的插件 默认的命令行安装工具,没有管理员权限要求. 预装了 pact工具,一个高级的包管理器,类似 apt-get或yum xTerm-256 ...

  6. JavaScript:new function(){}和function(){}()

    继:http://www.cnblogs.com/hongdada/p/3328089.html new function(){} function(){}(): 大概的总结: function(){ ...

  7. BZOJ1304: [CQOI2009]叶子的染色 树形dp

    Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含 ...

  8. Java filter中的chain.doFilter详解

    转载: 一.chain.doFilter作用 1.一般filter都是一个链,web.xml 里面配置了几个就有几个.一个一个的连在一起 request -> filter1 -> fil ...

  9. 如何解决Visual Studio2010 编译时提示系统找不到指定文件问题

    前一段时间,开始使用vs2010编写程序,可是在编译的时候总是报错,提示系统找不到指定文件,导致无法正常运行程序,花了好久时间终于找到原因解决,是因为常规的输出目录 要与链接的常规的输出文件要相对应. ...

  10. MVC ---- 如何使用Predicate以及如何自定定义Predicate委托

    微软公司提供只能返回bool值,接受一个参数的委托类型(Predicate). //Predicate委托 public static class PredicateDemo{ //内置方法 publ ...