【CF316G3】Good Substrings

题意:给出n个限制(p,l,r),我们称一个字符串满足一个限制当且仅当这个字符串在p中的出现次数在[l,r]之间。现在想问你S的所有本质不同的子串中,有多少个满足所有限制。

|S|,|p|<=10^5,n<=10。

题解:比较简单的后缀自动机题,我们先把原串和所有限制串放到一起建一个广义后缀自动机,然后在pre树上统计一下即可得到每个子串在每个限制串中出现了多少次。现在我们想知道原串中有多少满足条件的子串,即我们统计一下所有出现次数符合要求的,且在原串中出现过的点的贡献即可。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N=1100010;
int n,cnt,tot,last,ans;
int len[11],L[11],R[11],s[N][11],ch[N][26],pre[N],mx[N],to[N],nxt[N],head[N],ml[N];
char S[11][50010];
inline void extend(int x)
{
int p=last;
if(ch[p][x])
{
int q=ch[p][x];
if(mx[q]==mx[p]+1) last=q;
else
{
int nq=++tot;
pre[nq]=pre[q],pre[q]=nq,mx[nq]=mx[p]+1,last=nq;
memcpy(ch[nq],ch[q],sizeof(ch[q]));
for(;p&&ch[p][x]==q;p=pre[p]) ch[p][x]=nq;
}
}
else
{
int np=++tot;
last=np,mx[np]=mx[p]+1;
for(;p&&!ch[p][x];p=pre[p]) ch[p][x]=np;
if(!p) pre[np]=1;
else
{
int q=ch[p][x];
if(mx[q]==mx[p]+1) pre[np]=q;
else
{
int nq=++tot;
pre[nq]=pre[q],pre[q]=pre[np]=nq,mx[nq]=mx[p]+1;
memcpy(ch[nq],ch[q],sizeof(ch[q]));
for(;p&&ch[p][x]==q;p=pre[p]) ch[p][x]=nq;
}
}
}
}
inline void add(int a,int b)
{
to[cnt]=b,nxt[cnt]=head[a],head[a]=cnt++;
}
void dfs(int x)
{
for(int i=head[x],j;i!=-1;i=nxt[i])
{
dfs(to[i]);
for(j=0;j<=n;j++) s[x][j]+=s[to[i]][j];
}
}
int main()
{
scanf("%s%d",S[0],&n),len[0]=strlen(S[0]);
int i,j;
last=tot=1;
memset(head,-1,sizeof(head));
for(i=1;i<=n;i++) scanf("%s%d%d",S[i],&L[i],&R[i]),len[i]=strlen(S[i]);
for(i=0;i<=n;i++)
for(last=1,j=0;j<len[i];j++)
extend(S[i][j]-'a'),s[last][i]++;
for(i=2;i<=tot;i++) add(pre[i],i);
dfs(1);
for(i=2;i<=tot;i++) if(s[i][0])
{
for(j=1;j<=n;j++) if(s[i][j]<L[j]||s[i][j]>R[j]) break;
if(j>n) ans+=(mx[i]-mx[pre[i]]);
}
printf("%d",ans);
return 0;
}

【CF316G3】Good Substrings 后缀自动机的更多相关文章

  1. SPOJ NSUBSTR Substrings 后缀自动机

    人生第一道后缀自动机,总是值得纪念的嘛.. 后缀自动机学了很久很久,先是看CJL的论文,看懂了很多概念,关于right集,关于pre,关于自动机的术语,关于为什么它是线性的结点,线性的连边.许多铺垫的 ...

  2. ●SPOJ 8222 NSUBSTR–Substrings(后缀自动机)

    题链: http://www.spoj.com/problems/NSUBSTR/ 题解: 后缀自动机的水好深啊!懂不了相关证明,带着结论把这个题做了.看来这滩深水要以后再来了. 本题要用到一个叫 R ...

  3. SPOJ8222 NSUBSTR - Substrings(后缀自动机)

    You are given a string S which consists of 250000 lowercase latin letters at most. We define F(x) as ...

  4. SPOJ NSUBSTR Substrings ——后缀自动机

    建后缀自动机 然后统计次数,只需要算出right集合的大小即可, 然后更新f[l[i]]和rit[i]取个max 然后根据rit集合短的一定包含长的的性质,从后往前更新一遍即可 #include &l ...

  5. spoj 8222 Substrings (后缀自动机)

    spoj 8222 Substrings 题意:给一个字符串S,令F(x)表示S的所有长度为x的子串中,出现次数的最大值.求F(1)..F(Length(S)) 解题思路:我们构造S的SAM,那么对于 ...

  6. UVA - 10829 L-Gap Substrings (后缀自动机+线段树启发式合并)

    题意:统计一段字符串中形如UVU的子串个数(其中V的长度固定为g). 问题等价于求满足$g+1\leqslant |j-i|\leqslant g+LCP(i,j)$的后缀(i,j)的对数,即$\su ...

  7. SPOJ8222 Substrings( 后缀自动机 + dp )

    题目大意:给一个字符串S,令F(x)表示S的所有长度为x的子串中,出现次数的最大值.F(1)..F(Length(S)) 建出SAM, 然后求出Right, 求Right可以按拓扑序dp..Right ...

  8. SPOJ8222 NSUBSTR - Substrings 后缀自动机_动态规划

    讲起来不是特别好讲.总之,如果 $dp[i+1]>=dp[i]$,故$dp[i]=max(dp[i],dp[i+1])$ Code: #include <cstdio> #inclu ...

  9. SP8222 NSUBSTR - Substrings(后缀自动机+dp)

    传送门 解题思路 首先建出\(sam\),然后把\(siz\)集合通过拓扑排序算出来.对于每个点只更新它的\(maxlen\),然后再从大到小\(dp\)一次就行了.因为\(f[maxlen-1]&g ...

随机推荐

  1. level1 - unit 1 - 句子结构

    preface 学习英语做为一种爱好,就是希望有一天能够和老外流畅沟通,目前来看,日常沟通还是没有问题的和我的外教. 知识日积月累,现在就把以前学习的(从初中到现在)知识总结下.每天一更,更到单元总结 ...

  2. 让 Oracle 11g 32位运作在64位 Windows 上

    并非不能运行. 本人安装版未曾尝试,但绿色版倒是运行成功了. 很简单:注册表的位置发生了变化而已! 默认(32位.64位),oracle会读取以下注册表的位置:      [HKEY_LOCAL_MA ...

  3. go类型系统

    https://blog.csdn.net/hittata/article/details/50915496 https://blog.csdn.net/hittata/article/details ...

  4. Oracle的动态SQL

    例1:传递表名,和Where条件删除数据 CREATE OR REPLACE PROCEDURE raise_emp_salary (column_value NUMBER, emp_column V ...

  5. Log4net用法(.config文件)

    1.引用log4net.dll 2.在AssemblyInfo.cs中添加初始化: [assembly: log4net.Config.XmlConfigurator(ConfigFile = &qu ...

  6. 【代码审计】iZhanCMS_v2.1 后台任意文件删除漏洞分析

      0x00 环境准备 iZhanCMS官网:http://www.izhancms.com 网站源码版本:爱站CMS(zend6.0) V2.1 程序源码下载:http://www.izhancms ...

  7. dedeCMS解码

    var str = 'arrs1[]=99&arrs1[]=102&arrs1[]=103&arrs1[]=95&arrs1[]=100&arrs1[]=98& ...

  8. 自定义 Core Data 迁移

    本文转载至 http://objccn.io/issue-4-7/ 感谢本文作者 朱宏旭 的不啬分享 自定义 Core Data 迁移似乎是一个不太起眼的话题.苹果在这方面只提供了很少的文档,若是初次 ...

  9. Andoid数据存储之SQLite数据库

    SQLite是一个嵌入式的并且是一个轻量级的数据库: SQLite数据库支持大部分SQL语法, 允许使用SQL语句操作数据库, 其本质是一个文件, 不需要安装启动: SQLite数据库打开只是打开了一 ...

  10. myeclipse环境优化

    在项目右键打开Project > Properties > BUILDERS,打开source的tab,选择你的目录,删之~重启myeclipse 以下转载自百度知道 优化一下,下面内容都 ...