起因:对应用的监控和测量是WEB应用的一个重要话题,尤其在监控错误率,并发量,以及框架库中的动态值。于是,在性能优化的时候找到了metrics.net。

  • 简介
  • 开始使用
  • 度量
  • Gauges
  • Counters
  • Meters
  • Histograms
  • Timers

1. 簡介

Metrics.NET - a .NET Port, with lots of additional functionality, of the awesome Java metrics library by Coda Hale.

2. Getting Started

Install-Package Metrics.NET
Install-Package Metrics.NET.ElasticSearch -Version 0.5.0 # with ES
Install-Package Metrics.NET.Graphite -Version 0.5.0 #with Graphite

other:

  • Metrics.NET.RabbitMQ
  • Metrics.NET.InfluxDB
  • Metrics.NET.SignalFX
  • Metrics.NET.InfluxDbReporting
  • Metrics.NET.CloudWatch

Application_Start:

using Metrics;

Metric.Config
.WithHttpEndpoint("http://localhost:1234/")
.WithAllCounters();

访问:http://localhost:1234/ 即可看到效果。

3. 度量

  • Meters record the rate at which an event occurs。某事件发生的比率
  • Histograms measure the distribution of values in a stream of data。数据流的分布
  • Timers keep a histogram of the duration of a type of event and a meter of the rate of its occurrence。Meters和Histograms的结合。
  • Counters 64 bit integers that can be incremented or decremented。64位计数器
  • Gauges instantaneous values。简单值

3.1 Gauges

最简单的度量方式。代表一个瞬时值。

代码片段:

// gauge from Func<double>
Metric.Gauge("MyValue", () => ComputeMagicValue(), Unit.Items); // gauge that reads its value from a performance counter
Metric.PerformanceCounter("CPU Usage", "Processor", "% Processor Time",
"_Total", Unit.Custom("%")); // gauge that transforms the value of another gauge
Metric.Advanced.Gauge("Kbytes gauge",
() => new DerivedGauge(gaugeReturningValueInBytes, v => v / 1024.0 ),
Unit.KiloBytes); Metric.Context("[LogPool]").Gauge("dict.Count_Gauge",
() => { return dict.Count; }, Unit.Custom("個"), "log");

3.2 Counters

代表可以增減的64位整數。

代碼片段——緩存的數量

public class Cache
{
private static readonly Counter counter =
Metric.Counter("ItemsInCache", Unit.Items); private void AddItems(object[] items)
{
counter.Increment(items.Length);
} private void AddItem(object item)
{
counter.Increment();
} private void RemoveItem(object item)
{
counter.Decrement();
}
}

Counter提供分组计数的能力,针对标记接口可以实现:

public class SetCounterSample
{
private readonly Counter commandCounter =
Metric.Counter("Command Counter", Unit.Custom("Commands")); public interface Command { }
public class SendEmail : Command { }
public class ShipProduct : Command { }
public class BillCustomer : Command { }
public class MakeInvoice : Command { }
public class MarkAsPreffered : Command { } public void Process(Command command)
{
this.commandCounter.Increment(command.GetType().Name); // do actual command processing
}
}

输出:

 Command Counter
Count = 2550 Commands
Total Items = 5
Item 0 = 20.90% 533 Commands [BillCustomer]
Item 1 = 19.22% 490 Commands [MakeInvoice]
Item 2 = 19.41% 495 Commands [MarkAsPreffered]
Item 3 = 20.98% 535 Commands [SendEmail]
Item 4 = 19.49% 497 Commands [ShipProduct]

应用场景:可以用在WEB API中统计各种请求的数量。

3.3 Meters

A meter measures the rate at which an event occurs.meter测量一个事件发生的比率。

示例代码:请求异常的比率

public class RequestProcessor
{
private readonly Meter meter =
Metric.Meter("Errors", Unit.Requests, TimeUnit.Seconds); public void ProcessRequest()
{
try
{
// do actual processing
}
catch
{
meter.Mark(); // records an error
throw;
}
}
}

同样,也可以支持多态的分组:

public class SetMeterSample
{
private readonly Meter errorMeter = Metric.Meter("Errors", Unit.Errors); public interface Command { }
public class SendEmail : Command { }
public class ShipProduct : Command { }
public class BillCustomer : Command { }
public class MakeInvoice : Command { }
public class MarkAsPreffered : Command { } public void Process(Command command)
{
try
{
ActualCommandProcessing(command);
}
catch
{
errorMeter.Mark(command.GetType().Name);
}
}
}

输出:

 Errors
Count = 450 Errors
Mean Value = 35.68 Errors/s
1 Minute Rate = 25.44 Errors/s
5 Minute Rate = 24.30 Errors/s
15 Minute Rate = 24.10 Errors/s
Total Items = 5
Item 0 = 19.56% 88 Errors [BillCustomer]
Count = 88 Errors
Mean Value = 6.98 Errors/s
1 Minute Rate = 6.05 Errors/s
5 Minute Rate = 6.01 Errors/s
15 Minute Rate = 6.00 Errors/s
Item 1 = 18.67% 84 Errors [MakeInvoice]
Count = 84 Errors
Mean Value = 6.66 Errors/s
1 Minute Rate = 4.23 Errors/s
5 Minute Rate = 3.89 Errors/s
15 Minute Rate = 3.83 Errors/s
Item 2 = 20.22% 91 Errors [MarkAsPreffered]
Count = 91 Errors
Mean Value = 7.22 Errors/s
1 Minute Rate = 5.38 Errors/s
5 Minute Rate = 5.24 Errors/s
15 Minute Rate = 5.21 Errors/s
Item 3 = 19.78% 89 Errors [SendEmail]
Count = 89 Errors
Mean Value = 7.06 Errors/s
1 Minute Rate = 4.92 Errors/s
5 Minute Rate = 4.67 Errors/s
15 Minute Rate = 4.62 Errors/s
Item 4 = 21.78% 98 Errors [ShipProduct]
Count = 98 Errors
Mean Value = 7.77 Errors/s
1 Minute Rate = 4.86 Errors/s
5 Minute Rate = 4.50 Errors/s
15 Minute Rate = 4.43 Errors/s

3.4 Histograms

代码片段:搜索结果的分布。

开箱即用的三种抽样方法:

  • Exponentially Decaying Reservoir - 最近五分钟数据的分位数。
  • Uniform Reservoir - 产生整个週期有效的分位数
  • Sliding Window Reservoir - 产生代表过去N次测量的分位数
 private readonly Histogram histogram = Metric.Histogram("Search Results", Unit.Items);
public void Search(string keyword)
{
var results = ActualSearch(keyword);
histogram.Update(results.Length);
} // The histogram has the ability to track for which user value a Min, Max or Last Value has been recorded.
// The user value can be any string value (documentId, operationId, etc).
public class UserValueHistogramSample
{
private readonly Histogram histogram =
Metric.Histogram("Results", Unit.Items); public void Process(string documentId)
{
var results = GetResultsForDocument(documentId);
this.histogram.Update(results.Length, documentId);
}
}

输出:

    Results
Count = 90 Items
Last = 46.00 Items
Last User Value = document-3
Min = 2.00 Items
Min User Value = document-7
Max = 98.00 Items
Max User Value = document-4
Mean = 51.52 Items
StdDev = 30.55 Items
Median = 50.00 Items
75% <= 80.00 Items
95% <= 97.00 Items
98% <= 98.00 Items
99% <= 98.00 Items
99.9% <= 98.00 Items

3.5 Timers

示例代碼:

private readonly Timer timer =
Metric.Timer("HTTP Requests",Unit.Requests); public void ProcessRequest()
{
using(timer.NewContext())
{
// Actual Processing of the request
}
} private readonly Timer timer =
Metric.Timer("Requests", Unit.Requests); public void Process(string documentId)
{
using (var context = timer.NewContext(documentId))
{
ActualProcessingOfTheRequest(documentId); // if needed elapsed time is available in context.Elapsed
}
}

輸出:

  Requests
Count = 14 Requests
Mean Value = 1.86 Requests/s
1 Minute Rate = 1.80 Requests/s
5 Minute Rate = 1.80 Requests/s
15 Minute Rate = 1.80 Requests/s
Count = 14 Requests
Last = 869.03 ms
Last User Value = document-1
Min = 59.90 ms
Min User Value = document-6
Max = 869.03 ms
Max User Value = document-1
Mean = 531.81 ms
StdDev = 212.98 ms
Median = 594.83 ms
75% <= 670.18 ms
95% <= 869.03 ms
98% <= 869.03 ms
99% <= 869.03 ms
99.9% <= 869.03 ms

Metrics.NET实践(1)的更多相关文章

  1. Metrics.Net实践(2)在WEB中应用度量

    Gauges 可以画出Http Request执行时间的波形图: actionInfo表示MVC中的Action,即按照action类型来分组 Metric.Context(this.actionIn ...

  2. Prometheus Metrics 设计的最佳实践和应用实例,看这篇够了!

    Prometheus 是一个开源的监控解决方案,部署简单易使用,难点在于如何设计符合特定需求的 Metrics 去全面高效地反映系统实时状态,以助力故障问题的发现与定位.本文即基于最佳实践的 Metr ...

  3. metrics实践 (metrics-spring)

    这里主要介绍metrics与spring集成的使用方式. 1  添加maven依赖 <dependency> <groupId>com.ryantenney.metrics&l ...

  4. 中小研发团队架构实践之应用监控Metrics

    一.Metrics简介        应用监控系统Metrics由Metrics.NET+InfluxDB+Grafana组合而成,通过客户端Metrics.NET在业务代码中埋点,Metrics.N ...

  5. [实践] ubuntu下编译安装ambari

    ambari是一个Hadoop套件的管理工具,可以方便部署.管理及监控.最初开发时使用的就是RH系的Linux,只支持RHEL.CentOS5/6.OEL.SLES,暂不支持Ubuntu:可我的需求就 ...

  6. Python机器学习库scikit-learn实践

    原文:http://blog.csdn.net/zouxy09/article/details/48903179 一.概述 机器学习算法在近几年大数据点燃的热火熏陶下已经变得被人所“熟知”,就算不懂得 ...

  7. 图形化Cisco设备管理实践(附安装配置视频)

    图形化Cisco设备管理实践 Ciscoworks 2000是Cisco公司推出的基于SNMP协议的网络管理系统,通过它网络管理人员可以方便快捷地完成设备的配置.管理.监控和故障分析等任务, Cisc ...

  8. Spring cloud项目实践(一)

    链接地址:http://sail-y.github.io/2016/03/21/Spring-cloud%E9%A1%B9%E7%9B%AE%E5%AE%9E%E8%B7%B5/ 什么是Spring ...

  9. Dropbox可伸缩性设计最佳实践分享

    http://www.infoq.com/cn/news/2012/11/dropbox-scale-bestpractice Dropbox的运维工程师Rajiv,跟大家分享了可伸缩性设计的最佳实践 ...

随机推荐

  1. 树莓派与Arduino Leonardo使用NRF24L01无线模块通信之基于RF24库 (四) 树莓派单子节点查询

    考虑到项目的实际需要,树莓派作为主机,应该只在需要的时候查询特定节点发送的数据,因此接收到数据后需要根据头部判断是否是自己需要的数据,如果不是继续接收数据,超过一定时间未查询到特定节点的数据,则退出程 ...

  2. express框架结合ejs模板引擎使用

    我们在项目里建立一个views文件夹(必须),如果你不想使用views文件夹的话需要调用app.set("views","自定义文件夹名"),然后在里面建立一个 ...

  3. 函数调用时形参的传递也会被认为是赋值操作(继承自Object后会出现的问题)

    http://blog.csdn.net/houqd2012/article/details/25070987

  4. DotNetty 跨平台的网络通信库

    长久以来,.Net开发人员都非常羡慕Java有Netty这样,高效,稳定又易用的网络通信基础框架.终于微软的Azure团队,使用C#实现的Netty的版本发布.不但使用了C#和.Net平台的技术特点, ...

  5. Ubuntu 14.04(64bit)使用mentohust连接校园网

    ubuntu14.04系统安装成功之后,需要连接上网络才可以对更新系统以及安装一些必须包.而在学校中,经常遇到的情况需要通过锐捷客户端来连接校园网. 更新: 在Ubuntu14.04下面不用装ment ...

  6. 如何修改antd中表格的表头样式和奇偶行颜色交替

    在做antd表格时通常会用到table组件,但是table的表头时给定的,那么怎么修改表头的颜色呢? 这里用的时less的写法,在全局环境中写,所有的table表头都会变成自己定义的颜色 定义好表头的 ...

  7. cnblog博客CSS定制

    一.页面定制CSS #home { margin: 0 auto; width: 80%;/*原始65*/ min-width: 980px;/*页面顶部的宽度*/ background-color: ...

  8. eclipse中添加配置文件夹config

    1. 在项目上右键->Build path->Configure Build Path->Source下的Add Folder,如图 2. 在弹出框中,Create New Fold ...

  9. PGM学习之三 朴素贝叶斯分类器(Naive Bayes Classifier)

    介绍朴素贝叶斯分类器的文章已经很多了.本文的目的是通过基本概念和微小实例的复述,巩固对于朴素贝叶斯分类器的理解. 一 朴素贝叶斯分类器基础回顾 朴素贝叶斯分类器基于贝叶斯定义,特别适用于输入数据维数较 ...

  10. BZOJ5297 CQOI2018社交网络(矩阵树定理)

    板子题. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> # ...