【xsy2111】 【CODECHEF】Chef and Churus 分块+树状数组
题目大意:给你一个长度为$n$的数列$a_i$,定义$f_i=\sum_{j=l_i}^{r_i} num_j$。
有$m$个操作:
操作1:询问一个区间$l,r$请你求出$\sum_{i=l}^{r} f_i$。
操作2:将$a_x$变成$y$。
此题貌似正常做都不是很好做,考虑用一些奇奇怪怪的做法(比如说分块)
考虑到此题数列在不断地变化,我们考虑用树状数组来维护序列$a$,查询$f_i$的值可以在$O(log n)$的时间内完成。
如果这么做,单次询问的复杂度是$O(n log n)$的,显然不行。
我们令第$k$块中包含有函数$f(kN),f(kN+1).......f(kN+(N-1))$。其中$N$是一个常数
设$sum[i][j]$表示第i块中所有函数中数字$a_j$出现的次数。
设$ans[i]$表示第i块所有函数之和。
显然$ans[i]=\sum_{j=1}^{n} sum[i][j]\times num[j]$。
对于一个询问的区间,我们显然可以将其拆成尽可能多的块+不超过$2N$个单点;
对于每个块的块的和,我们显然可以在$O(1)$的复杂度内完成求值。
对于单点部分,我们直接查询就可以了。
对于修改操作;
首先我们更新树状数组,然后根据$sum[i][X]$的值来更新$ans[i]$即可,时间复杂度是$O(log\ n+\sqrt{n})$。
总时间复杂度为$O(n^{1.5}\ log\ n)$
这次的分块应该是编码效率最高的一次了
#include<bits/stdc++.h>
#define M 100005
#define N 360
#define lowbit(x) ((x)&(-(x)))
#define L unsigned long long
int n,m,l[M]={},r[M]={};
int sum[][M]={},num[M]={},bel[M]={};
L ans[M]={},a[M]={};
void add(int x,int k){for(int i=x;i<=n;i+=lowbit(i)) a[i]+=k;}
L Q(int x){L k=; for(int i=x;i;i-=lowbit(i)) k+=a[i]; return k;}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++) bel[i]=(i+N-)/N;
for(int i=;i<=n;i++) scanf("%d",num+i),add(i,num[i]);
for(int i=;i<=n;i++){
scanf("%d%d",l+i,r+i);
ans[bel[i]]+=Q(r[i])-Q(l[i]-);
sum[bel[i]][l[i]]++; sum[bel[i]][r[i]+]--;
}
for(int x=;x<=bel[n];x++)
for(int i=;i<=n;i++) sum[x][i]+=sum[x][i-];
scanf("%d",&m);
while(m--){
int op,X,Y;L res=; scanf("%d%d%d",&op,&X,&Y);
if(op==){
for(int x=;x<=bel[n];x++)
ans[x]+=1LL*sum[x][X]*(Y-num[X]);
add(X,Y-num[X]); num[X]=Y;
}else{
if(bel[X]==bel[Y]){
for(int i=X;i<=Y;i++) res+=Q(r[i])-Q(l[i]-);
printf("%llu\n",res);
continue;
}
for(int x=bel[X]+;x<bel[Y];x++) res+=ans[x];
for(int i=X;bel[X]==bel[i];i++) res+=Q(r[i])-Q(l[i]-);
for(int i=Y;bel[Y]==bel[i];i--) res+=Q(r[i])-Q(l[i]-);
printf("%llu\n",res);
}
}
}
【xsy2111】 【CODECHEF】Chef and Churus 分块+树状数组的更多相关文章
- 【XSY2111】Chef and Churus 分块 树状数组
题目描述 有一个长度为\(n\)的数组\(A\)和\(n\)个区间\([l_i,r_i]\),有\(q\)次操作: \(1~x~y\):把\(a_x\)改成\(y\) \(2~x~y\):求第\(l\ ...
- 【分块+树状数组】codechef November Challenge 2014 .Chef and Churu
https://www.codechef.com/problems/FNCS [题意] [思路] 把n个函数分成√n块,预处理出每块中各个点(n个)被块中函数(√n个)覆盖的次数 查询时求前缀和,对于 ...
- 【BZOJ 3295】动态逆序对 - 分块+树状数组
题目描述 给定一个1~n的序列,然后m次删除元素,每次删除之前询问逆序对的个数. 分析:分块+树状数组 (PS:本题的CDQ分治解法见下一篇) 首先将序列分成T块,每一块开一个树状数组,并且先把最初的 ...
- 【bzoj2141】排队 分块+树状数组
题目描述 排排坐,吃果果,生果甜嗦嗦,大家笑呵呵.你一个,我一个,大的分给你,小的留给我,吃完果果唱支歌,大家乐和和.红星幼儿园的小朋友们排起了长长地队伍,准备吃果果.不过因为小朋友们的身高有所区别, ...
- 【bzoj3744】Gty的妹子序列 分块+树状数组+主席树
题目描述 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见…… 某天,蒟蒻Autumn发现了从 Gty的妹子树(bzoj3720) 上掉落下来了许多妹子,他发现 她们排成 ...
- Bzoj 3295: [Cqoi2011]动态逆序对 分块,树状数组,逆序对
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2886 Solved: 924[Submit][Stat ...
- BZOJ3787:Gty的文艺妹子序列(分块,树状数组)
Description Autumn终于会求区间逆序对了!Bakser神犇决定再考验一下他,他说道: “在Gty的妹子序列里,某个妹子的美丽度可也是会变化的呢.你还能求出某个区间中妹子们美丽度的逆序对 ...
- 2018.06.30 BZOJ4765: 普通计算姬(dfs序+分块+树状数组)
4765: 普通计算姬 Time Limit: 30 Sec Memory Limit: 256 MB Description "奋战三星期,造台计算机".小G响应号召,花了三小时 ...
- [P3759][TJOI2017]不勤劳的图书管理员(分块+树状数组)
题目描述 加里敦大学有个帝国图书馆,小豆是图书馆阅览室的一个书籍管理员.他的任务是把书排成有序的,所以无序的书让他产生厌烦,两本乱序的书会让小豆产生 这两本书页数的和的厌烦度.现在有n本被打乱顺序的书 ...
随机推荐
- KbmMW 4.5 发布
We are happy to announce the release of kbmMW v. 4.50.00 Professional, Enterprise and CodeGear Editi ...
- 2018.07.22 洛谷P1967 货车运输(kruskal重构树)
传送门 这道题以前只会树剖和最小生成树+倍增. 而现在学习了一个叫做kruskal" role="presentation" style="position: ...
- Spring 集成 MemCache
1)xml <bean class="com.danga.MemCached.SockIOPool" factory-method="getInstance&quo ...
- 201709011工作日记--ART与Dalvik&&静态类与非静态类
1.ART 与 Dalvik 的优缺点对比 什么是Dalvik:Dalvik是Google公司自己设计用于Android平台的Java虚拟机.dex格式是专为Dalvik应用设计的一种压缩格.Dalv ...
- Hdu1728 逃离迷宫 2017-01-17 10:56 81人阅读 评论(0) 收藏
逃离迷宫 Time Limit : 1000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) Total Submissi ...
- Codeforces 706C Hard problem 2016-09-28 19:47 90人阅读 评论(0) 收藏
C. Hard problem time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...
- Android的方法数超过65535问题
Under the Hood: Dalvik patch for Facebook for Android 先来看一段中文内容 Hack Dalvik VM解决Android 2.3 DEX/Line ...
- readLine() 和 "\r","\n" 问题
很多输入流中都有一个函数readLine(),我们也经常使用这个函数,但有时如果不认真考虑,这个函数也会带来一些小麻烦. 如果我们是从控制台读入的话,我们也许没有想过readLine函数到底是根据&q ...
- hdu2041
题目 这道题以前也看到过,但是没有写出来,我刚开始以为用循环遍历一边就可以了,结果我错了,没想到是用的斐波拉契推出来的,用的是递推的思想. 站在楼梯的第n级想一下,前一步是从哪里来的,问题就清楚了. ...
- 获取Oracle EBS数据库跟踪文件方法
http://www.orapub.cn/posts/1624.html 一.以下在Oracle APP中执行: 1) Set the Profile Option: ‘Initialization ...