hdu 5251 包围点集最小矩形 ***
题意:小度熊有一个桌面,小度熊剪了很多矩形放在桌面上,小度熊想知道能把这些矩形包围起来的面积最小的矩形的面积是多少。
求个凸包,矩形的边一定在凸包上,枚举边,求最大值,即为所求,多年不拍几何,直接套了个模板
以后还得练练
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
using namespace std;
typedef double typev;
const double eps = 1e-;
const int N = ;
int sign(double d){
return d < -eps ? - : (d > eps);
}
struct point{
typev x, y;
void in()
{
scanf("%lf%lf",&x,&y);
}
point operator-(point d){
point dd;
dd.x = this->x - d.x;
dd.y = this->y - d.y;
return dd;
}
point operator+(point d){
point dd;
dd.x = this->x + d.x;
dd.y = this->y + d.y;
return dd;
}
void read(){ scanf("%lf%lf", &x, &y); }
}ps[N],pd[N];
int n, cn;
double dist(point d1, point d2){
return sqrt(pow(d1.x - d2.x, 2.0) + pow(d1.y - d2.y, 2.0));
}
double dist2(point d1, point d2){
return pow(d1.x - d2.x, 2.0) + pow(d1.y - d2.y, 2.0);
}
bool cmp(point d1, point d2){
return d1.y < d2.y || (d1.y == d2.y && d1.x < d2.x);
}
//st1-->ed1叉乘st2-->ed2的值
typev xmul(point st1, point ed1, point st2, point ed2){
return (ed1.x - st1.x) * (ed2.y - st2.y) - (ed1.y - st1.y) * (ed2.x - st2.x);
}
typev dmul(point st1, point ed1, point st2, point ed2){
return (ed1.x - st1.x) * (ed2.x - st2.x) + (ed1.y - st1.y) * (ed2.y - st2.y);
}
//多边形类
struct poly{
static const int N = ; //点数的最大值
point ps[N+]; //逆时针存储多边形的点,[0,pn-1]存储点
int pn; //点数
poly() { pn = ; }
//加进一个点
void push(point tp){
ps[pn++] = tp;
}
//第k个位置
int trim(int k){
return (k+pn)%pn;
}
void clear(){ pn = ; }
};
//返回含有n个点的点集ps的凸包
poly graham(point* ps, int n){
sort(ps, ps + n, cmp);
poly ans;
if(n <= ){
for(int i = ; i < n; i++){
ans.push(ps[i]);
}
return ans;
}
ans.push(ps[]);
ans.push(ps[]);
point* tps = ans.ps;
int top = -;
tps[++top] = ps[];
tps[++top] = ps[];
for(int i = ; i < n; i++){
while(top > && xmul(tps[top - ], tps[top], tps[top - ], ps[i]) <= ) top--;
tps[++top] = ps[i];
}
int tmp = top; //注意要赋值给tmp!
for(int i = n - ; i >= ; i--){
while(top > tmp && xmul(tps[top - ], tps[top], tps[top - ], ps[i]) <= ) top--;
tps[++top] = ps[i];
}
ans.pn = top;
return ans;
}
//求点p到st->ed的垂足,列参数方程
point getRoot(point p, point st, point ed){
point ans;
double u=((ed.x-st.x)*(ed.x-st.x)+(ed.y-st.y)*(ed.y-st.y));
u = ((ed.x-st.x)*(ed.x-p.x)+(ed.y-st.y)*(ed.y-p.y))/u;
ans.x = u*st.x+(-u)*ed.x;
ans.y = u*st.y+(-u)*ed.y;
return ans;
}
//next为直线(st,ed)上的点,返回next沿(st,ed)右手垂直方向延伸l之后的点
point change(point st, point ed, point next, double l){
point dd;
dd.x = -(ed - st).y;
dd.y = (ed - st).x;
double len = sqrt(dd.x * dd.x + dd.y * dd.y);
dd.x /= len, dd.y /= len;
dd.x *= l, dd.y *= l;
dd = dd + next;
return dd;
}
//求含n个点的点集ps的最小面积矩形,并把结果放在ds(ds为一个长度是4的数组即可,ds中的点是逆时针的)中,并返回这个最小面积。
double getMinAreaRect(point* ps, int n, point* ds){
int cn, i;
double ans;
point* con;
poly tpoly = graham(ps, n);
con = tpoly.ps;
cn = tpoly.pn;
if(cn <= ){
ds[] = con[]; ds[] = con[];
ds[] = con[]; ds[] = con[];
ans=;
}else{
int l, r, u;
double tmp, len;
con[cn] = con[];
ans = 1e40;
l = i = ;
while(dmul(con[i], con[i+], con[i], con[l])
>= dmul(con[i], con[i+], con[i], con[(l-+cn)%cn])){
l = (l-+cn)%cn;
}
for(r=u=i = ; i < cn; i++){
while(xmul(con[i], con[i+], con[i], con[u])
<= xmul(con[i], con[i+], con[i], con[(u+)%cn])){
u = (u+)%cn;
}
while(dmul(con[i], con[i+], con[i], con[r])
<= dmul(con[i], con[i+], con[i], con[(r+)%cn])){
r = (r+)%cn;
}
while(dmul(con[i], con[i+], con[i], con[l])
>= dmul(con[i], con[i+], con[i], con[(l+)%cn])){
l = (l+)%cn;
}
tmp = dmul(con[i], con[i+], con[i], con[r]) - dmul(con[i], con[i+], con[i], con[l]);
tmp *= xmul(con[i], con[i+], con[i], con[u]);
tmp /= dist2(con[i], con[i+]);
len = xmul(con[i], con[i+], con[i], con[u])/dist(con[i], con[i+]);
if(sign(tmp - ans) < ){
ans = tmp;
ds[] = getRoot(con[l], con[i], con[i+]);
ds[] = getRoot(con[r], con[i+], con[i]);
ds[] = change(con[i], con[i+], ds[], len);
ds[] = change(con[i], con[i+], ds[], len);
}
}
}
return ans+eps;
}
int main()
{
int i,j,k;
#ifndef ONLINE_JUDGE
freopen("1.in","r",stdin);
#endif
int tt;
scanf("%d",&tt);
int ca=;
while(tt--)
{
printf("Case #%d:\n",ca++);
scanf("%d",&n);
for(i=;i<*n;i++)
{
ps[i].in();
}
double q=getMinAreaRect(ps,*n,pd);
printf("%d\n",int(q+0.5));
}
}
hdu 5251 包围点集最小矩形 ***的更多相关文章
- HDU 5251 矩形面积 (旋转卡壳)
2015年百度之星程序设计大赛 - 初赛(1) 1006 比赛链接:2015年百度之星程序设计大赛 - 初赛(1) 题目链接:HDU 5251 Problem Description 小度熊有一个桌面 ...
- BZOJ 1185: [HNOI2007]最小矩形覆盖-旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标-备忘板子
来源:旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标 BZOJ又崩了,直接贴一下人家的代码. 代码: #include"stdio.h" #include"str ...
- 最小包围多边形(凸包;最小包围点集)——C代码例子
本文来自:http://alienryderflex.com/smallest_enclosing_polygon/ 这个C代码例子需要一群2维点集,如下图所示: 要获得包含这些点的最小多边形如下图所 ...
- hdu5251最小矩形覆盖
题意(中问题直接粘吧)矩形面积 Problem Description 小度熊有一个桌面,小度熊剪了很多矩形放在桌面上,小度熊想知道能把这些矩形包围起来的面积最小的矩形的面积是多少. Input ...
- OpenCV 学习笔记03 边界框、最小矩形区域和最小闭圆的轮廓
本节代码使用的opencv-python 4.0.1,numpy 1.15.4 + mkl 使用图片为 Mjolnir_Round_Car_Magnet_300x300.jpg 代码如下: impor ...
- bzoj 1185 旋转卡壳 最小矩形覆盖
题目大意 就是求一个最小矩形覆盖,逆时针输出其上面的点 这里可以看出,那个最小的矩形覆盖必然有一条边经过其中凸包上的两个点,另外三条边必然至少经过其中一个点,而这样的每一个点逆时针走一遍都满足单调性 ...
- 【旋转卡壳+凸包】BZOJ1185:[HNOI2007]最小矩形覆盖
1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 1945 Solve ...
- BZOJ:1185: [HNOI2007]最小矩形覆盖
1185: [HNOI2007]最小矩形覆盖 这计算几何……果然很烦…… 发现自己不会旋转卡壳,补了下,然后发现求凸包也不会…… 凸包:找一个最左下的点,其他点按照与它连边的夹角排序,然后维护一个栈用 ...
- BZOJ 1185: [HNOI2007]最小矩形覆盖 [旋转卡壳]
1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 1435 Solve ...
随机推荐
- 【LinuxC】GCC编译C程序,关闭随机基址
1.编译.链接和运行程序 C代码示例: #include <stdio.h> #include <stdlib.h> int main() { printf("hel ...
- Spiral Matrix I & II
Spiral Matrix I Given an integer n, generate a square matrix filled with elements from 1 to n^2 in s ...
- MIUI7,Android版本5.0.2,一个程序发送自定义广播,另一个程序没有接收到
对照<第一行代码——Android>进行学习,第五章中说到广播包的相关知识,前面获取广播等程序例程都可以跑的通,但是在5.3.2节中,程序A发送自定义广播,并接收自定义广播,同时程序B也接 ...
- verilog中wire与reg类型的区别
每次写verilog代码时都会考虑把一个变量是设置为wire类型还是reg类型,因此把网上找到的一些关于这方面的资料整理了一下,方便以后查找. wire表示直通,即只要输入有变化,输出马上无条件地反映 ...
- 在jsp页面中设置了远程验证,在初始化时必须预先调用一次。
参考链接:http://code.taobao.org/p/sztaotao/diff/5/trunk/code/src/main/webapp/webpage/modules/sys/roleFor ...
- 在Mac上搭建ReactNative开发环境
1.安装Homebrew, Mac系统的包管理器,用于安装NodeJS和一些其他必需的工具软件. /usr/bin/ruby -e "$(curl -fsSL https://raw.g ...
- Python生成器-博文读后感
Windows 10家庭中文版,Python 3.6.4, 上午看过了一篇讲Python生成器的博文: 提高你的Python: 解释‘yield’和‘Generators(生成器)’(英文原文) 这篇 ...
- PHP计算字符串的长度
<?php /** * 计算字符串的长度(汉字按照两个字符计算) * * @param string $str 字符串 * * @return int */ function str_len($ ...
- wiki confluence安装
注意:安装前请先确认内存 至少2G 1.上传 atlassian-confluence-5.9.3-x64.bin 文件,修改权限 chmod 777 atlassian-confluence-5.9 ...
- Shell学习笔记:<<EOF子命令
在shell编程中,“EOF”通常与“<<”结合使用,“<<EOF”表示后续的输入作为子命令或子shell的输入,直到遇到“EOF”,再次返回到主调用shell,可将其理解为分 ...