【刷题】BZOJ 2820 YY的GCD
Description
Input
Output
Sample Input
10 10
100 100
Sample Output
2791
HINT
T = 10000
N, M <= 10000000
Solution
最近开始狂补东西
莫比乌斯反演就是之一,然后做题
个人认为反演里要设计出F(x)和f(x)是有难度的,其他大佬们都说做多了就是套路了,所以还欠火候,加紧做题
对于这道题,我们设F(d)为gcd为d及其倍数的对数的个数,设f(x)为gcd为d的对数的个数
那么我们有
进行反演
那么需要求的就是(p为质数,小于等于N也小于等于M)
改变枚举顺序,把枚举p的倍数变成枚举上式的d/p
并且因为
式子变为
我们令T=dp,把枚举d变为枚举T,同时把后边的两个分式提出来
发现后面的可以在素数筛的时候预处理,那么对于一组数据就可做了
对于多组数据,我们发现这个式子是可以整除分块的,优化后就可以过了
对于预处理,我们设一个g(T)
素数筛的时候,令k=i*prime[j]
1)如果prime[j]整除i,mu[k]=0
2)如果不整除,那么根据定义,mu[k]=-mu[i]
因为筛中每个数只会筛到一次,所以赋值之后就不会再被覆盖
由于之前用了整除分块,所以g还需要一个数组s存前缀和,分块时就可以直接把值拿出来了
#include<bits/stdc++.h>
#define ll long long
const int MAXN=+;
ll T,prime[MAXN],cnt,g[MAXN],s[MAXN],mu[MAXN];
bool vis[MAXN];
template<typename T> inline void read(T &x)
{
T data=,w=;
char ch=;
while(ch!='-'&&(ch<''||ch>''))ch=getchar();
if(ch=='-')w=-,ch=getchar();
while(ch>=''&&ch<='')data=((T)data<<)+((T)data<<)+(ch^''),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<)putchar('-'),x=-x;
if(x>)write(x/);
putchar(x%+'');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void init()
{
memset(vis,true,sizeof(vis));
vis[]=vis[]=;
mu[]=;
for(register int i=;i<MAXN;++i)
{
if(vis[i])
{
prime[++cnt]=i;
mu[i]=-;
}
for(register int j=;j<=cnt&&i*prime[j]<MAXN;++j)
{
vis[i*prime[j]]=;
if(i%prime[j])mu[i*prime[j]]=-mu[i];
else break;
}
}
for(register int j=;j<=cnt;++j)
for(register int i=;i*prime[j]<MAXN;++i)g[i*prime[j]]+=mu[i];
for(register int i=;i<MAXN;++i)s[i]=s[i-]+g[i];
}
inline ll solve(ll N,ll M)
{
ll ans=;
for(register int i=;;)
{
if(i>min(N,M))break;
ll j=min(N/(N/i),M/(M/i));
ans+=(N/i)*(M/i)*(s[j]-s[i-]);
i=j+;
}
return ans;
}
int main()
{
init();
read(T);
while(T--)
{
ll N,M;
read(N);read(M);
write(solve(N,M),'\n');
}
return ;
}
2820 YY的GCD
【刷题】BZOJ 2820 YY的GCD的更多相关文章
- 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)
首先我们来看一道题 BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
- Bzoj 2820: YY的GCD(莫比乌斯反演+除法分块)
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...
- bzoj 2820 YY的GCD 莫比乌斯反演
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...
- bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- bzoj 2820 YY的GCD(莫比乌斯反演)
Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 kAc这种傻× ...
- ●BZOJ 2820 YY的GCD
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题解: 莫比乌斯反演 先看看这个题:HDU 1695 GCD(本题简化版) HDU 1 ...
- BZOJ 2820 YY的GCD(莫比乌斯函数)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2820 题意:给定n,m.求1<=x<=n, 1<=y<=m且Gc ...
随机推荐
- JAVA图书管理系统汇总共27个[转]
java图书馆管理系统[优秀毕业设计论文+源码]http://down.51cto.com/data/68350java+sql server图书管理系统 http://down.51cto.com/ ...
- fiddler和bugfree之间的联动(做伪请求、伪响应、并发、抓密码)
青.取之于蓝,而青于蓝:冰.水为之,而寒于水 不积跬步,无以至千里;不积小流,无以成江海. 1解压Fiddler Web Debugger V4.6.2017修正中文第6版至C盘Program Fil ...
- elasticsearch(全文检索)的介绍和安装
ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口.Elasticsearch是用Java开发的,并作为Apach ...
- 解决网速慢时maven仓库访问慢
构建maven项目时会下载很多依赖,会从官网地址下载是个外国网站,访问速度会很慢,但可以通过修改maven的settings.xml文件换成国内的镜像地址就可以加快访问速度: 一.找到settings ...
- PSO算法的改进(参数)
## 基本PSO的改进 虽然粒子群在求解优化函数时,表现了较好的寻优能力:通过迭代寻优计算,能够迅速找到近似解:但基本的PSO容易陷入局部最优,导致结果误差较大. 两个方面:1.将各种先进理论引入到P ...
- Elasticsearch Java client(ES Client 简介、Java REST Client、Java Client、Spring Data Elasticsearch)
elasticsearch系列七:ES Java客户端-Elasticsearch Java client(ES Client 简介.Java REST Client.Java Client.Spri ...
- 使用Java EE 在eclipse 开发动态的Web工程(Java web项目)
1.使用Java EE 在eclipse 开发动态的Web工程(Java web项目)1)开发开发选项切换到JavaEE2)可以在Windows->show view中找到package exp ...
- php在数组中判断某个值是否存在
php在数组中查找指定值是否存在的方法有很多,记得很久以前我一直都是傻傻的用foreach循环来查找的,下面我主要分享一下用php内置的三个数组函数来查找指定值是否存在于数组中,这三个数组分别是 in ...
- 记一次centos6升级salt-minion启动失败的问题
记一次centos6升级salt-minion启动失败的问题 作者:耀耀 blog:https://www.liuyao.me 一.起因 升级Salt-minion后 使用/etc/init.d/sa ...
- SpringBoot初始教程之Redis集中式Session管理
1.介绍 有关Session的管理方式这里就不再进行讨论,目前无非就是三种单机Session(基于单机内存,无法部署多台机器).基于Cookie(安全性差).基于全局的统一Session管理(redi ...