【纪中集训2019.3.23】Deadline
题意
描述
一个二分图\((A,B)\),每个点额外有一个颜色0或者1;
匹配时,只能相同颜色的点匹配;
给出\(A\)中的颜色,问如何分配\(B\)种的颜色使得\((A,B)\)的最大匹配最小;
范围
$1 \le n , m \le 2000 \ , \ 1 \le k \le 5000 $
题解
将\(A\)中的点按照标号划分为\(v_0和v_1\);
将B中的点拆成\(u_0\)和\(u_1\),\(u_0\)向\(u_1\)连流量为\(1\)的边;
\(S\)向\(v_0\)连流量为1的边,\(v_1\)向\(T\)连流量为\(1\)的边;
\(v_0\)向原图中相连的\(u_0\)连\(inf\)边,\(u_1\)向\(v_1\)连\(inf\)边;
简单说明:
可以转化为一种标号使得最小点覆盖最小;
\(<S,v_0> \ , \ <u_0,u_1> \ , \ <v_1,T>\) 被割分别代表\(v_0,u,v_1\)被选入覆盖集;
只需要说明割和合法方案等价:
由于不存在一条从\(S\)到\(T\)的残量路径,所以要么\(u\)被割了,要么\(u\)两边相连的点至少一边被割了;
这和合法方案的条件是等价的;
所以\(ans\)=最小割;
考试的时候因为当初做网络流的时候没有理解深刻并且有太久没有做了,所以没有做出来;
#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
const int N=10010;
char gc(){
static char*p1,*p2,s[1000000];
if(p1==p2)p2=(p1=s)+fread(s,1,1000000,stdin);
return(p1==p2)?EOF:*p1++;
}
int rd(){
int x=0;char c=gc();
while(c<'0'||c>'9')c=gc();
while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+c-'0',c=gc();
return x;
}
int n,m,k,o,hd[N],p[N],S,T,d[N],vis[N],cur[N];
struct Edge{int v,nt,f;}E[N<<1];
void adde(int u,int v,int f){
E[o]=(Edge){v,hd[u],f};hd[u]=o++;
E[o]=(Edge){u,hd[v],0};hd[v]=o++;
}
bool bfs(){
static queue<int>q;
for(int i=S;i<=T;++i)d[i]=vis[i]=0;
while(!q.empty())q.pop();
d[S]=vis[S]=1;q.push(S);
while(!q.empty()){
int u=q.front();q.pop();
for(int i=hd[u];~i;i=E[i].nt)if(E[i].f){
int v=E[i].v;
if(vis[v])continue;
d[v]=d[u]+1;
q.push(v);
vis[v]=1;
if(v==T)return true;
}
}
return false;
}
int dfs(int u,int F){
if(u==T||!F)return F;
int flow=0,f;
for(int i=cur[u];~i;i=E[i].nt){
int v=E[cur[u]=i].v;
if(d[v]==d[u]+1&&(f=dfs(v,min(E[i].f,F)))){
flow+=f;F-=f;
E[i].f-=f;E[i^1].f+=f;
if(!F)break;
}
}
return flow;
}
int dinic(){
int flow=0;
while(bfs()){
for(int i=S;i<=T;++i)cur[i]=hd[i];
flow+=dfs(S,inf);
}
return flow;
}
int main(){
freopen("deadline.in","r",stdin);
freopen("deadline.out","w",stdout);
memset(hd,-1,sizeof(hd));
n=rd();m=rd();k=rd();S=0;T=n+m*2+1;
for(int i=1;i<=n;++i)if(p[i]=rd())adde(S,2*m+i,1);else adde(2*m+i,T,1);
for(int i=1;i<=m;++i)adde(i*2-1,i*2,1);
for(int i=1;i<=k;++i){
int u=rd(),v=rd();
if(p[u])adde(m*2+u,v*2-1,inf);
else adde(v*2,m*2+u,inf);
}
int ans=dinic();
cout<<ans<<endl;
return 0;
}
【纪中集训2019.3.23】Deadline的更多相关文章
- 【纪中集训2019.3.23】IOer
题目 描述 你要在\(m\)天内,刷\(n\)道题,每天可以刷的题的数目不限: 第\(i\)天可以刷的题目的种类是\(ui+v\): 两种刷题的方案不同当且仅当某天刷题的数量不同或者依次刷题的种类不同 ...
- 【纪中集训2019.3.27】【集训队互测2018】小A的旅行(白)
题目 描述 \(0-n-1\)的图,满足\(n\)是\(2\)的整数次幂, $ i \to j $ 有 $ A_{i,j} $ 条路径: 一条路径的愉悦值定义为起点和终点编号的\(and\)值 ...
- 【纪中集训2019.3.12】Mas的仙人掌
题意: 给出一棵\(n\)个点的树,需要加\(m\)条边,每条边脱落的概率为\(p_{i}\) ,求加入的边在最后形成图中仅在一个简单环上的边数的期望: \(1 \le n \ , m \le 1 ...
- 【纪中集训2019.3.11】Cubelia
题目: 描述 给出长度为\(n\)的数组\(a\)和\(q\)个询问\(l,r\). 求区间\([l,r]\)的所有子区间的前缀和的最大值之和: 范围: $n \le 2 \times 10^5 , ...
- 【纪中集训2019.3.13】fft
题意: 描述 一共有\(n+m\)道题,其中\(n\)道答案是\(A\),\(m\)道答案是\(B\): 你事先知道\(n和m\),问在最优情况下的期望答错次数,对\(998244353\)取模: 范 ...
- 【纪中集训2019.3.12】Z的礼物
题意 已知\(a_{i} = \sum_{j=1}^{i} \{^{i} _{j} \}b_{j}\), 给出\(a_{1} 到 a_{n}\) : 求\(b_{l} 到 b_{r}\)在\(1e9+ ...
- 「中山纪中集训省选组D1T1」最大收益 贪心
题目描述 给出\(N\)件单位时间任务,对于第\(i\)件任务,如果要完成该任务,需要占用\([S_i, T_i]\)间的某个时刻,且完成后会有\(V_i\)的收益.求最大收益. 澄清:一个时刻只能做 ...
- 纪中集训 Day 2
今天(其实是昨天= =)早上起来发现好冷好冷啊= = 吃完饭就准备比赛了,好吧B组难度的题总有一道不知到怎么写QAQ 太弱了啊!!! 蒟蒻没人权啊QAQ 今天第4题不会写,在这里说说吧 题目的意思就是 ...
- 纪中集训 Day1
今天早上起来吃饭,发现纪中伙食真的是太差了!!!什么都不热,早餐的面包还好,然后就迎来了美好的早晨= = 早上做一套题,T1T2果断秒,T3一看就是noi原题,还好看过题解会写,然后就愉快的码+Deb ...
随机推荐
- ats编译中增加透明度 选项
在大多数情况下,如果环境支持透明度,则configure将自动启用它.对于其他环境,可能需要 配置configure 选项. --enable-posix-cap 这实现了POSIX功能,这是透明度所 ...
- 最新Microsoft Edge!使用chromium内核
2018年11月,微软宣布其Edge浏览器将采用Chromium引擎,意味着微软的Edge浏览器以失败告终. 但令人振奋的是,新版Edge也许会“死而复生”.在使用了Chromium内核后,Edge各 ...
- Nginx是如何配置为 Web 服务器的【转载】
详解 Nginx是如何配置为 Web 服务器的 林涛 发表于:2016-11-29 23:23 分类:WebServer 标签:Nginx,web,web服务器 521次 抽象来说,将 Nginx 配 ...
- Daily Scrum meeting 2015.11.9
今天主要完成项目最后的调试工作及二轮迭代的准备 下面是今天的Task统计: Member Today’s Task Tomorrow’s Task 江昊 今天,完成前端界面调整,网站发布 调试 杨墨犁 ...
- Task 6.2站立会议三
今天我完成了软件的主要聊天界面的视频通话和语音通话的部分功能,过程中遇到很多不会的知识.因为使用的是C#,虽然很容易上手但是还会存在很多不懂得内容.
- mianshi
https://blog.csdn.net/u012557610/article/details/80350099 https://blog.csdn.net/liuqiyao_01/article/ ...
- 乱码之UTF-8 &GBK
在提交JSP时对于乱码问题,首先我们要搞清楚为什么会出现乱码? 看JSP的头文件:<%@ page contentType="text/html;charset=UTF-8" ...
- POJ 2411 Mondriaan's Dream 插头dp
题目链接: http://poj.org/problem?id=2411 Mondriaan's Dream Time Limit: 3000MSMemory Limit: 65536K 问题描述 S ...
- PHP 多进程开发
pcntl_fork(); https://blog.csdn.net/wujiangwei567/article/details/77006724 https://blog.csdn.net/qq_ ...
- 软工网络15团队作业8——Beta阶段敏捷冲刺(Day6)
提供当天站立式会议照片一张 每个人的工作 1.讨论项目每个成员的昨天进展 赵铭: 数据库整理. 吴慧婷:我的世界界面完成部分. 陈敏: 我的世界功能--学习情况功能完成. 吴雅娟:我的世界功能--学习 ...