拉格朗日乘子法是一种优化算法,主要用来解决约束优化问题。他的主要思想是通过引入拉格朗日乘子来将含有n个变量和k个约束条件的约束优化问题转化为含有n+k个变量的无约束优化问题。

其中,利用拉格朗日乘子法主要解决的问题为:

等式的约束条件和不等式的条件约束。

拉格朗日乘子的背后的数学意义是其为约束方程梯度线性组合中每个向量的系数。

等约束条件的解决方法不在赘述。

对于非等约束条件的求解,需要满足KKT条件才能进行求解。下面对于KKT条件进行分析。

不等式约束优化问题:

得到拉格朗日乘子法的求解方程:

给出KKT条件:

实际上,为什么要给出KKT条件?这里涉及到对偶问题。

我们引入拉格朗日函数L(x,α,β)将有约束的优化问题转换为无约束的优化问题,然后对原问题的参数求导,获得使拉格朗日函数最小的拉格朗日对偶函数g(α,β),最后使得对偶函数最大的问题则成为原问题的对偶问题。(对偶函数给出了主问题最优解的下界。那么下界最大是什么,这就是主问题的对偶问题)

因此对于上面拉格朗日乘子法问题的描述表达为:

但其实是仍然个很难解决的问题,因为我们要先解决不等式约束的max问题,然后再在x上求最小值。怎么办呢?如果能把顺序换一下,先解决关于x的最小值,在解决关于α、β的不等式约束问题就好了。即,

假设原问题为p,对偶问题为d,事实上,p和d并不完全相等,此处含有一个性质:弱对偶性

即:

而他两个的差即为对偶间隙

解释:大家想一下,函数L中最大值中最小的一个总比最小值中最大的那一个要大,也就是对偶问题提供了原问题最优值的一个下界。

但是大家想,我们是想通过对偶问题求解原问题的最优解,所以只有当二者相等时才可能将原问题转化成对偶问题进行求解。当然,当满足一定条件的情况下,便有p=d。而这个条件便是 slater条件和KTT条件。

在凸优化理论中,有一个Slater定理,当这个定理满足,结合KKT条件,那么对偶间隙就会消失,就是强对偶性成立。

其中对于KKT条件的KKT因子为什么需要大于等于0不太好理解。

我的理解:如上,只有当大于等于0的时候,L的取值才能有最大值,即:

这一步才有值。

当然这个只是我个人的理解吧,理论上详细的证明参考《数值优化》-Jorge Nocedal  第12章

当然它上面的公式:

都是基于

这样一个假设,不过我们一般假设的约束条件是小于等于0,所以看上去形式有点不一样,其实道理都一样的。

拉格朗日乘子法以及KKT条件的更多相关文章

  1. 拉格朗日乘子法与KKT条件 && SVM中为什么要用对偶问题

    参考链接: 拉格朗日乘子法和KKT条件 SVM为什么要从原始问题变为对偶问题来求解 为什么要用对偶问题 写在SVM之前——凸优化与对偶问题 1. 拉格朗日乘子法与KKT条件 2. SVM 为什么要从原 ...

  2. 关于拉格朗日乘子法与KKT条件

    关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件   目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉 ...

  3. 【机器学习之数学】03 有约束的非线性优化问题——拉格朗日乘子法、KKT条件、投影法

    目录 1 将有约束问题转化为无约束问题 1.1 拉格朗日法 1.1.1 KKT条件 1.1.2 拉格朗日法更新方程 1.1.3 凸优化问题下的拉格朗日法 1.2 罚函数法 2 对梯度算法进行修改,使其 ...

  4. 机器学习——支持向量机(SVM)之拉格朗日乘子法,KKT条件以及简化版SMO算法分析

    SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM ...

  5. 装载:关于拉格朗日乘子法与KKT条件

    作者:@wzyer 拉格朗日乘子法无疑是最优化理论中最重要的一个方法.但是现在网上并没有很好的完整介绍整个方法的文章.我这里尝试详细介绍一下这方面的有关问题,插入自己的一些理解,希望能够对大家有帮助. ...

  6. 约束优化方法之拉格朗日乘子法与KKT条件

    引言 本篇文章将详解带有约束条件的最优化问题,约束条件分为等式约束与不等式约束,对于等式约束的优化问题,可以直接应用拉格朗日乘子法去求取最优值:对于含有不等式约束的优化问题,可以转化为在满足 KKT ...

  7. 【365】拉格朗日乘子法与KKT条件说明

    参考:知乎回答 - 通过山头形象描述 参考:马同学 - 如何理解拉格朗日乘子法? 参考: 马同学 - 如何理解拉格朗日乘子法和KKT条件? 参考:拉格朗日乘数 - Wikipedia 自己总结的规律 ...

  8. 拉格朗日乘子法与KKT条件

    拉格朗日乘子法 \[min \quad f = 2x_1^2+3x_2^2+7x_3^2 \\s.t. \quad 2x_1+x_2 = 1 \\ \quad \quad \quad 2x_2+3x_ ...

  9. 机器学习——最优化问题:拉格朗日乘子法、KKT条件以及对偶问题

    1 前言 拉格朗日乘子法(Lagrange Multiplier)  和 KKT(Karush-Kuhn-Tucker)  条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等 ...

随机推荐

  1. HDU 2063 过山车 二分匹配

    解题报告:有m个女生和n个男生要结成伴坐过山车,每个女生都有几个自己想选择的男生,然后要你确定最多能组成多少对组合. 最裸的一个二分匹配,这是我第一次写二分匹配,给我最大的感受就是看那些人讲的匈牙利算 ...

  2. vue组件间通信

    组件间通信(父子,兄弟) 相关链接\组件通信http://www.cnblogs.com/xulei1992/p/6121974.html 学习链接Vue.js--60分钟快速入门http://www ...

  3. cmake设置默认静态链接库

    在使用cmake来编写CMakeLists.txt时,如果不特别指明,那么cmake是默认动态链接库的,最终生成的二进制文件只能在与本地相同环境下的机器运行,如果想把生成的二进制拷贝到其他机器上执行, ...

  4. 20165227 实验二《Java面向对象程序设计》实验报告

    2017-2018-4 20165227实验二<Java面向对象程序设计>实验报告 实验内容 初步掌握单元测试和TDD 理解并掌握面向对象三要素:封装.继承.多态 初步掌握UML建模 熟悉 ...

  5. 微信小程序实战--开发一个简单的快递单号查询

    功能如图: 虽然工作中只负责小程序后台开发,但是还是小程序开发产生了浓厚的兴趣,官方文档也是超级详细了 这里就简单做一个快递单号的查询: 新建一个page: 接着就可以写wxml了.这里用一个简单的i ...

  6. mybatis查询参数为0时无法识别问题

    最近在工作中遇到一个mybatis参数问题,主要是列表查询按照状态进行过滤,其中已完成状态值是0,被退回是1.如图所示 , 然后Mapper里面是和平常一样的写法<if test="s ...

  7. Pytorch自定义数据库

    1)前言 虽然torchvision.datasets中已经封装了好多通用的数据集,但是我们在使用Pytorch做深度学习任务的时候,会面临着自定义数据库来满足自己的任务需要.如我们要训练一个人脸关键 ...

  8. php CI框架

    CodeIgniter 是一个小巧但功能强大的 PHP 框架,作为一个简单而“优雅”的工具包,它可以为 PHP 程序员建立功能完善的 Web 应用程序.如果你是一个使用共享主机,并且为客户所要求的期限 ...

  9. php-fpm和cgi,并发响应的理解以及高并发和多线程的关系

    首先搞清楚php-fpm与cgi的关系 cgi cgi是一个web server与cgi程序(这里可以理解为是php解释器)之间进行数据传输的协议,保证了传递的是标准数据. php-cgi php-c ...

  10. python2.7

    python2.7支持win32.win64 下载地址:http://pan.baidu.com/s/1dE39eQ9 初学,附一个牛人的python教程地址:http://www.liaoxuefe ...