拉格朗日乘子法是一种优化算法,主要用来解决约束优化问题。他的主要思想是通过引入拉格朗日乘子来将含有n个变量和k个约束条件的约束优化问题转化为含有n+k个变量的无约束优化问题。

其中,利用拉格朗日乘子法主要解决的问题为:

等式的约束条件和不等式的条件约束。

拉格朗日乘子的背后的数学意义是其为约束方程梯度线性组合中每个向量的系数。

等约束条件的解决方法不在赘述。

对于非等约束条件的求解,需要满足KKT条件才能进行求解。下面对于KKT条件进行分析。

不等式约束优化问题:

得到拉格朗日乘子法的求解方程:

给出KKT条件:

实际上,为什么要给出KKT条件?这里涉及到对偶问题。

我们引入拉格朗日函数L(x,α,β)将有约束的优化问题转换为无约束的优化问题,然后对原问题的参数求导,获得使拉格朗日函数最小的拉格朗日对偶函数g(α,β),最后使得对偶函数最大的问题则成为原问题的对偶问题。(对偶函数给出了主问题最优解的下界。那么下界最大是什么,这就是主问题的对偶问题)

因此对于上面拉格朗日乘子法问题的描述表达为:

但其实是仍然个很难解决的问题,因为我们要先解决不等式约束的max问题,然后再在x上求最小值。怎么办呢?如果能把顺序换一下,先解决关于x的最小值,在解决关于α、β的不等式约束问题就好了。即,

假设原问题为p,对偶问题为d,事实上,p和d并不完全相等,此处含有一个性质:弱对偶性

即:

而他两个的差即为对偶间隙

解释:大家想一下,函数L中最大值中最小的一个总比最小值中最大的那一个要大,也就是对偶问题提供了原问题最优值的一个下界。

但是大家想,我们是想通过对偶问题求解原问题的最优解,所以只有当二者相等时才可能将原问题转化成对偶问题进行求解。当然,当满足一定条件的情况下,便有p=d。而这个条件便是 slater条件和KTT条件。

在凸优化理论中,有一个Slater定理,当这个定理满足,结合KKT条件,那么对偶间隙就会消失,就是强对偶性成立。

其中对于KKT条件的KKT因子为什么需要大于等于0不太好理解。

我的理解:如上,只有当大于等于0的时候,L的取值才能有最大值,即:

这一步才有值。

当然这个只是我个人的理解吧,理论上详细的证明参考《数值优化》-Jorge Nocedal  第12章

当然它上面的公式:

都是基于

这样一个假设,不过我们一般假设的约束条件是小于等于0,所以看上去形式有点不一样,其实道理都一样的。

拉格朗日乘子法以及KKT条件的更多相关文章

  1. 拉格朗日乘子法与KKT条件 && SVM中为什么要用对偶问题

    参考链接: 拉格朗日乘子法和KKT条件 SVM为什么要从原始问题变为对偶问题来求解 为什么要用对偶问题 写在SVM之前——凸优化与对偶问题 1. 拉格朗日乘子法与KKT条件 2. SVM 为什么要从原 ...

  2. 关于拉格朗日乘子法与KKT条件

    关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件   目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉 ...

  3. 【机器学习之数学】03 有约束的非线性优化问题——拉格朗日乘子法、KKT条件、投影法

    目录 1 将有约束问题转化为无约束问题 1.1 拉格朗日法 1.1.1 KKT条件 1.1.2 拉格朗日法更新方程 1.1.3 凸优化问题下的拉格朗日法 1.2 罚函数法 2 对梯度算法进行修改,使其 ...

  4. 机器学习——支持向量机(SVM)之拉格朗日乘子法,KKT条件以及简化版SMO算法分析

    SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM ...

  5. 装载:关于拉格朗日乘子法与KKT条件

    作者:@wzyer 拉格朗日乘子法无疑是最优化理论中最重要的一个方法.但是现在网上并没有很好的完整介绍整个方法的文章.我这里尝试详细介绍一下这方面的有关问题,插入自己的一些理解,希望能够对大家有帮助. ...

  6. 约束优化方法之拉格朗日乘子法与KKT条件

    引言 本篇文章将详解带有约束条件的最优化问题,约束条件分为等式约束与不等式约束,对于等式约束的优化问题,可以直接应用拉格朗日乘子法去求取最优值:对于含有不等式约束的优化问题,可以转化为在满足 KKT ...

  7. 【365】拉格朗日乘子法与KKT条件说明

    参考:知乎回答 - 通过山头形象描述 参考:马同学 - 如何理解拉格朗日乘子法? 参考: 马同学 - 如何理解拉格朗日乘子法和KKT条件? 参考:拉格朗日乘数 - Wikipedia 自己总结的规律 ...

  8. 拉格朗日乘子法与KKT条件

    拉格朗日乘子法 \[min \quad f = 2x_1^2+3x_2^2+7x_3^2 \\s.t. \quad 2x_1+x_2 = 1 \\ \quad \quad \quad 2x_2+3x_ ...

  9. 机器学习——最优化问题:拉格朗日乘子法、KKT条件以及对偶问题

    1 前言 拉格朗日乘子法(Lagrange Multiplier)  和 KKT(Karush-Kuhn-Tucker)  条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等 ...

随机推荐

  1. 【leetcode 简单】 第六十六题 用栈实现队列

    使用栈实现队列的下列操作: push(x) -- 将一个元素放入队列的尾部. pop() -- 从队列首部移除元素. peek() -- 返回队列首部的元素. empty() -- 返回队列是否为空. ...

  2. python加速包numba并行计算多线程

    1.下面直接上代码需要注意的地方numba的官网找到 1)有一些坑自己去numba的官网找找看,下面是我的写的一个加速的程序,希望对你有帮助. #coding:utf-8 import time fr ...

  3. C++ 和 MFC的学习

    1. 在Windows应用程序设计中,既可以使用个C的基本数据类型,也可以使用Windows自定义的数据类型.但要注意,凡是Windows自定义的关键字都要大写. 2. 什么是句柄? 在Windows ...

  4. 【bzoj3065】: 带插入区间K小值 详解——替罪羊套函数式线段树

    不得不说,做过最爽的树套树———— 由于有了区间操作,我们很容易把区间看成一棵平衡树,对他进行插入,那么外面一层就是平衡树了,这就与我们之前所见到的不同了.我们之前所见到的大多数是线段树套平衡树而此题 ...

  5. 四、springcloud之服务调用Feign(二)

    一.Fegin的常见应用 Feign的Encoder.Decoder和ErrorDecoder Feign将方法签名中方法参数对象序列化为请求参数放到HTTP请求中的过程,是由编码器(Encoder) ...

  6. 20 Organizing Go code 组织go代码

    Organizing Go code 16 August 2012 Introduction Go code is organized differently to that of other lan ...

  7. angular 如何使用第三方组件ng-bootstrap

    1.在你的项目中以下指令    npm install --save @ng-bootstrap/ng-bootstrap 安装完成会显示 + @ng-bootstrap/ng-bootstrap@1 ...

  8. Flask:redirect()函数

    Windows 10家庭中文版,Python 3.6.4,Flask 1.0.2 重定向,就是在客户端提交请求后,本来是访问A页面,结果,后台给了B页面,当然,B页面中才有需要的信息. 在Flask中 ...

  9. InnoDB锁问题

    InnoDB锁问题 InnoDB与MyISAM的最大不同有两点:一是支持事务(TRANSACTION):二是采用了行级锁.行级锁与表级锁本来就有许多不同之处,另外,事务的引入也带来了一些新问题.下面我 ...

  10. Maven 基础知识

    Maven MavenMaven 简介 Maven MavenMaven 是 Apache Apache Apache 软件基金会组织维护的 软件基金会组织维护的 软件基金会组织维护的 软件基金会组织 ...