机器学习之路: python线性回归 过拟合 L1与L2正则化
git:https://github.com/linyi0604/MachineLearning
正则化:
提高模型在未知数据上的泛化能力
避免参数过拟合
正则化常用的方法:
在目标函数上增加对参数的惩罚项
削减某一参数对结果的影响力度 L1正则化:lasso
在线性回归的目标函数后面加上L1范数向量惩罚项。 f = w * x^n + b + k * ||w||1 x为输入的样本特征
w为学习到的每个特征的参数
n为次数
b为偏置、截距
||w||1 为 特征参数的L1范数,作为惩罚向量
k 为惩罚的力度 L2范数正则化:ridge
在线性回归的目标函数后面加上L2范数向量惩罚项。 f = w * x^n + b + k * ||w||2 x为输入的样本特征
w为学习到的每个特征的参数
n为次数
b为偏置、截距
||w||2 为 特征参数的L2范数,作为惩罚向量
k 为惩罚的力度 下面模拟 根据蛋糕的直径大小 预测蛋糕价格
采用了4次线性模型,是一个过拟合的模型
分别使用两个正则化方法 进行学习和预测
from sklearn.linear_model import LinearRegression, Lasso, Ridge
# 导入多项式特征生成器
from sklearn.preprocessing import PolynomialFeatures '''
正则化:
提高模型在未知数据上的泛化能力
避免参数过拟合
正则化常用的方法:
在目标函数上增加对参数的惩罚项
削减某一参数对结果的影响力度 L1正则化:lasso
在线性回归的目标函数后面加上L1范数向量惩罚项。 f = w * x^n + b + k * ||w||1 x为输入的样本特征
w为学习到的每个特征的参数
n为次数
b为偏置、截距
||w||1 为 特征参数的L1范数,作为惩罚向量
k 为惩罚的力度 L2范数正则化:ridge
在线性回归的目标函数后面加上L2范数向量惩罚项。 f = w * x^n + b + k * ||w||2 x为输入的样本特征
w为学习到的每个特征的参数
n为次数
b为偏置、截距
||w||2 为 特征参数的L2范数,作为惩罚向量
k 为惩罚的力度 下面模拟 根据蛋糕的直径大小 预测蛋糕价格
采用了4次线性模型,是一个过拟合的模型
分别使用两个正则化方法 进行学习和预测 ''' # 样本的训练数据,特征和目标值
x_train = [[6], [8], [10], [14], [18]]
y_train = [[7], [9], [13], [17.5], [18]]
# 准备测试数据
x_test = [[6], [8], [11], [16]]
y_test = [[8], [12], [15], [18]]
# 进行四次线性回归模型拟合
poly4 = PolynomialFeatures(degree=4) # 4次多项式特征生成器
x_train_poly4 = poly4.fit_transform(x_train)
# 建立模型预测
regressor_poly4 = LinearRegression()
regressor_poly4.fit(x_train_poly4, y_train)
x_test_poly4 = poly4.transform(x_test)
print("四次线性模型预测得分:", regressor_poly4.score(x_test_poly4, y_test)) # 0.8095880795746723 # 采用L1范数正则化线性模型进行学习和预测
lasso_poly4 = Lasso()
lasso_poly4.fit(x_train_poly4, y_train)
print("L1正则化的预测得分为:", lasso_poly4.score(x_test_poly4, y_test)) # 0.8388926873604382 # 采用L2范数正则化线性模型进行学习和预测
ridge_poly4 = Ridge()
ridge_poly4.fit(x_train_poly4, y_train)
print("L2正则化的预测得分为:", ridge_poly4.score(x_test_poly4, y_test)) # 0.8374201759366456
通过比较 经过正则化的模型 泛化能力明显的更好啦
机器学习之路: python线性回归 过拟合 L1与L2正则化的更多相关文章
- 机器学习(二十三)— L0、L1、L2正则化区别
1.概念 L0正则化的值是模型参数中非零参数的个数. L1正则化表示各个参数绝对值之和. L2正则化标识各个参数的平方的和的开方值. 2.问题 1)实现参数的稀疏有什么好处吗? 一个好处是可以简化 ...
- 机器学习之路: python 线性回归LinearRegression, 随机参数回归SGDRegressor 预测波士顿房价
python3学习使用api 线性回归,和 随机参数回归 git: https://github.com/linyi0604/MachineLearning from sklearn.datasets ...
- Spark2.0机器学习系列之12: 线性回归及L1、L2正则化区别与稀疏解
概述 线性回归拟合一个因变量与一个自变量之间的线性关系y=f(x). Spark中实现了: (1)普通最小二乘法 (2)岭回归(L2正规化) (3)La ...
- 机器学习中的L1、L2正则化
目录 1. 什么是正则化?正则化有什么作用? 1.1 什么是正则化? 1.2 正则化有什么作用? 2. L1,L2正则化? 2.1 L1.L2范数 2.2 监督学习中的L1.L2正则化 3. L1.L ...
- 4.机器学习——统计学习三要素与最大似然估计、最大后验概率估计及L1、L2正则化
1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计” ...
- L1与L2正则化的对比及多角度阐述为什么正则化可以解决过拟合问题
正则化是一种回归的形式,它将系数估计(coefficient estimate)朝零的方向进行约束.调整或缩小.也就是说,正则化可以在学习过程中降低模型复杂度和不稳定程度,从而避免过拟合的危险. 一. ...
- 深入理解L1、L2正则化
过节福利,我们来深入理解下L1与L2正则化. 1 正则化的概念 正则化(Regularization) 是机器学习中对原始损失函数引入额外信息,以便防止过拟合和提高模型泛化性能的一类方法的统称.也就是 ...
- day-17 L1和L2正则化的tensorflow示例
机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1-norm和ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数.L2范数也被称为权重衰 ...
- L1与L2正则化
目录 过拟合 结构风险最小化原理 正则化 L2正则化 L1正则化 L1与L2正则化 参考链接 过拟合 机器学习中,如果参数过多.模型过于复杂,容易造成过拟合. 结构风险最小化原理 在经验风险最小化(训 ...
随机推荐
- caffe设计网络教程(一)
假设现在我们要设计一个基于VGG的网络,主要考虑的问题是可否修改VGG类似于resnet那样,应该怎么修改?更具体来说,我们需要在VGG网络上考虑eltwise层,现在我们有三种方案,如下: 方案一: ...
- Request爬取网站(seo.chinaz.com)百度权重的查询结果
一:脚本需求 利用Python3查询网站权重并自动存储在本地数据库(Mysql数据库)中,同时导出一份网站权重查询结果的EXCEL表格 数据库类型:MySql 数据库表单名称:website_weig ...
- zTree静态树与动态树的用法——(七)
0.[简介] zTree 是利用 JQuery 的核心代码,实现一套能完成大部分常用功能的 Tree 插件 兼容 IE.FireFox.Chrome 等浏览器 在一个页面内可同时生成多个 Tree 实 ...
- 我看到的最棒的Twisted入门教程!
http://www.douban.com/note/232204441/ http://www.cnblogs.com/sevenyuan/archive/2010/11/18/1880681.ht ...
- Python基础之多线程事件Event
import threading,time class Boss(threading.Thread): def run(self): print("BOSS:伙计们今晚上加班到22:00&q ...
- ajax.BeginForm异步提交表单并显示更新数据
view代码: <!--基本信息模块--> 2 <div class="profile_box" id="basicInfo"> 3 & ...
- Java HashCode详解
一.为什么要有Hash算法 Java中的集合有两类,一类是List,一类是Set.List内的元素是有序的,元素可以重复.Set元素无序,但元素不可重复.要想保证元素不重复,两个元素是否重复应该依据什 ...
- JQ + CSS实现浪漫表白必备
JQ + CSS实现浪漫表白必备页面 效果图: 图片素材 : 代码如下,复制即可使用: <!DOCTYPE html> <html> <head> <meta ...
- three.js是什么,能干嘛,和webgl什么关系
如今浏览器的功能越来越强大,而且这些功能可能通过JavaScript直接调用.你可以用HTML5标签轻松地添加音频和视频,而且可以在HTML5画布上创建各种交互组件.现在这个功能集合里又有了一个新成员 ...
- Luogu P4894 【GodFly求解法向量】
个人感觉我的解法比官方题解好理解得多 因为是任意一个法向量嘛,不妨设$x=1$ 然后解一个二元一次方程就可以解决了 但是因为要求输出三个整数 代码 #include<iostream> # ...